首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Ax≠0.证明:向量组β,β+α1,β+α22,…,β+αt线性无关.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Ax≠0.证明:向量组β,β+α1,β+α22,…,β+αt线性无关.
admin
2021-07-27
47
问题
设向量组α
1
,α
2
,…,α
t
是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Ax≠0.证明:向量组β,β+α
1
,β+α
2
2,…,β+α
t
线性无关.
选项
答案
设kβ+k
1
(β+α
1
)+…+k
t
(β+α
t
)=0,即(k+k
1
+…+k
t
)β+k
1
α
1
+…+k
t
α
t
=0,等式两边左乘A,得(k+k
1
+…+k
t
)Aβ=0→k+k
1
+…+k
t
=0,故k
1
α
1
+…+k
t
α
t
=0.由α
1
,α
2
,…,α
t
线性无关,得k
1
=…=k
t
=0,故k=0,所以β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/rhy4777K
0
考研数学二
相关试题推荐
没线性方程组AX=kβ1+β2有解,其中A则k为().
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则().
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,设证明二次型f对应的矩阵为2ααT+ββT;
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得∫0af(x)dx=af(0)+f’(ξ)。
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
下列行列式的值为n!的是().
设为正项级数,则下列结论正确的是()
设α0是A的特征向量,则α0不一定是其特征向量的矩阵是
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设n维列向量组α1…,αm(m<n)线性无关,则n维列向量组β1…,βm线性无关的充分必要条件是()
随机试题
只用于静压常温条件下中低压容器的补强形式是()补强。
固经丸治疗经期延长的适应证是
下列地基处理方法中,最常用最经济的深层地基处理方法是()。
教学专用电影胶片(已曝光;已冲洗;宽度为35mm)
2009年3月,甲市某广告公司(在甲市迎宾区注册)受该市某玻璃厂(在甲市和平区注册)委托设计、制作了一则内容为“某玻璃厂研制成功世界首创的有别于银胆的无毒金色瓶胆”广告,甲市晚报在没有审查其有关证明文件的情况下予以发布。经查实:(1)金胆并不是全新工艺研制
根据《民法通则》的规定,下列关于法律行为有效要件的表述中,不正确的是()。
金融约束论批评金融自由化的主要理由是()。
承德避暑山庄占地面积为()万平方米,是中国现存最大的古典皇家园林。
8x²+10xy-3y²是49的倍数。(1)x,y都是整数(2)4x-7是7的倍数
毛泽东在1939年指出,取得新民主主义革命胜利要解决好的三个基本问题是( )
最新回复
(
0
)