首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量组α1…,αm(m<n)线性无关,则n维列向量组β1…,βm线性无关的充分必要条件是( )
设n维列向量组α1…,αm(m<n)线性无关,则n维列向量组β1…,βm线性无关的充分必要条件是( )
admin
2019-08-12
72
问题
设n维列向量组α
1
…,α
m
(m<n)线性无关,则n维列向量组β
1
…,β
m
线性无关的充分必要条件是( )
选项
A、向量组α
1
…,α
m
可由向量组β
1
…,β
m
线性表示.
B、向量组β
1
…,β
m
可由向量组α
1
…,α
m
线性表示.
C、向量组β
1
…,β
m
与向量组α
1
…,α
m
等价.
D、矩阵A=(α
1
…,α
m
)与矩阵B=(β
1
…,β
m
)等价.
答案
D
解析
本题考查向量线性表示与等价向量组的概念以及对充分必要条件的理解.要求考生掌握两个向量组等价充分必要条件是这两个向量组能互相线性表示;两个同型矩阵等价充分必要条件是它们的秩相等.选项A、B、C都不是向量组β
1
β
2
……β
m
线性无关的必要条件.例如
这两个向量组都线性无关,秩都为2,但这两组向量不能互相线性表示,从而不等价.所以选项A、B、C均不正确.但是“矩阵A、B等价的充要条件是r(A)=r(B)”,而
所以β
1
β
2
……β
m
也线性无关的充分必要条件r(A)=r(B),即矩阵A与B等价,故选D.
转载请注明原文地址:https://kaotiyun.com/show/0rN4777K
0
考研数学二
相关试题推荐
(87年)函数f(x)=xsinx
(09年)函数f(x)=的可去间断点的个数为
当x→0时,下列四个无穷小中哪一个是比其它几个更高阶的无穷小量
(2015年)设矩阵A=,且A3=O.(Ⅰ)求a的值;(Ⅱ)若矩阵X满足X-XA2-AX+AXA2=E,其中E为3阶单位矩阵.求X.
(2001年)已知矩阵且矩阵X满足AXA+BXB=AXB+BXA+E,其中E是3阶单位阵,求X.
(2012年)设函数f(x,y)可微.且对任意x,y都有,则使不等式f(x1,y1)<f(x2,y2)成立的一个充分条件是
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.讨论f’(x)在x=0处的连续性.
设f(x)在区间[0,1]上连续,在区间(0,1)内存在二阶导数,且f(0)=f(1).证明:存在ξ∈(0,1)使2f’(ξ)+ξf"(ξ)=0.
设y=f(x)是区间[0,1]上任一非负连续函数.(1)试证存在x0∈(0,1),使得在区间在区间[0,x0]上以f(x0)为高的矩形的面积等于在区间[x0,1]上以y=f(x)为曲面的曲边梯形的面积.(2)又设f(x)在(0,1)上可导,且f’(x)
设y=f(x)为区间[0,1]上的非负连续函数.证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
随机试题
物流管理的最终目标是()。
抑制胃液分泌的重要因素
下列各项中,不属于太阴病证的临床表现的是
擅自添加着色剂、防腐剂等敷料的必须是列入国家药品标准的品种
A.右归丸合理中丸B.左归饮加制首乌、龟板C.左归丸去牛膝,合二至丸D.保阴煎加沙参、麦冬、五味子、阿胶E.右归丸去肉桂、当归,加黄芪、覆盆子、赤石脂
关于施工合同的义务下列说法正确的是()。
下列各项个人所得,应纳个人所得税的是()。
阅读下面材料,回答下面题。现有600名初中一年级学生身高的次数分布的资料,学生的最低身高是139cm,最高身高是171cm,学生身高的数据被分成了11组,组间距为3cm,现知道每组学生的人数,已有所有学生身高的平均数。欲考查这些学生的身高是否
设随机变量X服从正态分布N(μ,1),已知P{x≤3}=0.975,则P{X≤一0.92}=__________.
Howusefularetheviewsofpublicschoolstudentsabouttheirteachers?Quiteuseful,accordingtopreliminaryresultsrele
最新回复
(
0
)