首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=1,且|f’(x)|≤1,试证:1<∫02f(x)dx≤3.
设f(x)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=1,且|f’(x)|≤1,试证:1<∫02f(x)dx≤3.
admin
2017-05-31
29
问题
设f(x)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=1,且|f’(x)|≤1,试证:1<∫
0
2
f(x)dx≤3.
选项
答案
由拉格朗日微分中值定理,得 存在点ξ
1
∈(0,x),使得f(x)一f(0)=f’(ξ
1
)x, 存在点ξ
2
∈(x,2),使得f(x)一f(2)=f’(ξ
2
)(x一2). 又|f’(x)|≤1,所以有 |f(x)一f(0)|≤x<=>1一x≤f(x)≤1+x,x∈[0,1], |f(x)一f(2)|≤2一x<=>x一1≤f(x)≤3一x,x∈[1,2]. 由定积分的性质可知 ∫
0
2
f(x)dx≥∫
0
1
(1一x)dx+∫
0
2
(x一1)dx=1, ∫
0
2
f(x)dx≤∫
0
1
(1+x)dx+∫
1
2
(3一x)dx=3. 故1≤∫
0
2
f(x)dx≤3.
解析
先应用拉格朗日微分中值定理估计f(x)的值域范围,再用积分性质估计定积分.
已知f(x)一阶可导,且至少有一个端点函数值为零的命题,通常先写出含这个端点的拉格朗日微分中值定理的结论:
f(x)=f(x)一f(a)=f’(ξ)(x—a) (f(a)=0),
或
f(x)=f(x)一f(b)=f’(ξ)(x一b) (f(b)=0).
然后,根据题意进行不等式放缩.
若有f(a)=f(b)=0,则f(x)可表示为
f(x)=f(x)一f(a)=f’(ξ
1
)(x一a),
f(x)=f(x)一f(b)=f’(ξ
2
)(x一b).
转载请注明原文地址:https://kaotiyun.com/show/riu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
设n元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1;
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.矩阵A的特征值和特征向量.
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时,向量组(I)与(Ⅱ)等价?
设函数f(x,y)连续,则二次积分等于().
求极限
极限=_________.
(2010年试题,17)(I)比较的大小,说明理由.(Ⅱ)设求极限
(Ⅰ)证明定积分等式(Ⅱ)求数列极限J=limJn
设a1,a2,…,an是互不相同的实数,且求线性方程组AX=b的解.
随机试题
“中国人占世界人口总数的22%”中,“中国人”是()
A.拔毒生肌,杀虫止痒B.解毒明目退翳,收湿止痒敛疮C.外用攻毒杀虫,内服逐水通便D.外用清热解毒,内服清肺化痰铅丹的功效是
全关节结核是指
关于滤过的影响因素的不正确表述是
流行病学中的偏倚分为()。
甲遭乙追杀,情急之下夺过丙的摩托车骑上就跑,丙被掉骨折。乙开车继续追杀,甲为逃命飞身跳下疾驶的摩托车奔入树林,丙一万元的摩托车被毁。关于甲行为的说法,下列哪一选项是正确的?(卷二真题试卷第4题)
现行《中华人民共和国海关法》是经()全国人民代表大会修改的。
杠杆投资组合P的标准差是()
邓小平的一生经历了太多的磨难和辉煌,留下了太多的记忆和回想。可人们印象最深的,总是他那求真的(),务实的本色。
下列情形可能发生的是:
最新回复
(
0
)