首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,∫abf(x)dx=0.证明: (Ⅰ)存在ξi∈(a,b),使得f(ξi)=f’’(ξi)(i=1,2); (Ⅱ)存在η∈(a,b),使得f(η)=f’’(η).
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,∫abf(x)dx=0.证明: (Ⅰ)存在ξi∈(a,b),使得f(ξi)=f’’(ξi)(i=1,2); (Ⅱ)存在η∈(a,b),使得f(η)=f’’(η).
admin
2013-08-05
50
问题
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,∫
a
b
f(x)dx=0.证明:
(Ⅰ)存在ξ
i
∈(a,b),使得f(ξ
i
)=f
’’
(ξ
i
)(i=1,2);
(Ⅱ)存在η∈(a,b),使得f(η)=f
’’
(η).
选项
答案
(Ⅰ)令F(x)=∫
a
x
f(t)dt,F(a)=F(b)=0, 由罗尔定理,存在c∈(a,b),使得f
’
(c)=0,即f(c)=0. 令h(x)=e
-x
f(x),则h(a)=h(c)=h(b)=0, 由罗尔定理,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得h
’
(ξ
1
)=h
’
(ξ
2
)=0, 而h
’
(x)=e
-x
[f
’
(x)-f(x)]且e
-x
≠0,所以f(ξ
i
)=f
’
(ξ
i
)(i=1,2). (Ⅱ)令H(x)=e
-x
[f
’
(x)-f(x)],H
’
(x)=e
x
[f
’’
(x)-f(x)]. H(ξ
1
)=H(ξ
2
)=0,由罗尔定理,存在η∈(ξ
1
,ξ
2
)[*](a,b),使得H
’
(η)=0, 注意到e
x
≠0,所以f(η)=f
’’
(η).
解析
转载请注明原文地址:https://kaotiyun.com/show/bJ54777K
0
考研数学一
相关试题推荐
[2009年]函数y=x2x在区间(0,1]上的最小值为__________.
[2010年]当0≤θ≤π时,对数螺线r=eθ的弧长为__________.
(2011年试题,三)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T,不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,α)T线性表示.将β1β2,β3用α1,α2,α3线性表示.
已知A是3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的解,又(A-6E)α=0,α≠0.求(A-3E)6.
求曲线的渐近线.
设D:x2+y2≤1;D1:x2+y2≤1,x≥0,y≥0.则下列选项中不成立的是()
设y1(x)和y2(x)是微分方程y“+p(x)y+q(x)y=0的两个特解,则由y1(x),y2(x)能构成该方程的通解的充分条件为()
设f(x)是满足的连续函数,则当x→0时是关于x的_________阶无穷小量.
一辆机场交通车载有25名乘客途经9个站,每位乘客都等可能在这9个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,令随机变量Yi表示在第i站下车的乘客数,i=1,2,…,Xi在有乘客下车时取值为1,否则取值为0.求:(Yi
设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,X=a(X1-2X2)2+b(3X3-4X4)2,则当a=__________,b=____________时,统计量X服从X2分布,其自由度为_____________.
随机试题
我国在霍乱的防治研究中,将检出的霍乱弧菌区分为流行株和非流行株,对这两类菌株及其引起的腹泻病人的医学处理有所区别。两类菌株的区分若选用5株噬菌体把菌株分为32型,其中流行株的噬菌体型是哪几型
海绵窦综合征表现为
A.吸气性呼吸困难B.呼气性呼吸困难C.混合性呼吸困难D.夜间阵发性呼吸困难E.伴体循环淤血的呼吸困难急性呼吸窘迫综合征多表现为
下列情况下沟通的信息易被曲解的是( )。
下列各项中( )属于建筑法明确规定的内容。
对于证券公司提交()的申请,国务院证券监督管理机构自受理之日起20个工作日做出批准或者不予批准的书面决定。Ⅰ.要求审查董事任职资格Ⅱ.要求审查监事任职资格Ⅲ.破产申请Ⅳ.变更公司章程
“受托代理负债”科目的期末贷方余额,反映民间非营利组织尚未清偿的受托代理负债。()
某社会服务机构拟向某基金会申请资助,基金会要求该机构编制预算并列出服务项目的开支及所需资源设施。为满足基金会的要求,该机构在编制预算时宜采用()。
通过云计算技术可以实现共享软硬件资源和信息。下列直接使用到云计算技术的是()。
对同一事物,“仁者见仁,智者见智”,这说明
最新回复
(
0
)