首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵. 求矩阵B.
设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵. 求矩阵B.
admin
2017-06-14
30
问题
设3阶对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=-2,α
1
=(1,-1,1)
T
是A的属于λ
1
的一个特征向量,记B=A
5
-4A
3
+E,其中E为3阶单位矩阵.
求矩阵B.
选项
答案
令 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/rpu4777K
0
考研数学一
相关试题推荐
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
设向最组α1,α2,…,αs线性无关,则下列向量组线性相关的是
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关;
设a1,a2,…,at为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+a1,β+a2,…,β+at线性无关.
如果0<β<α<π/2,证明
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为F(x,y)=(Ⅰ)X和Y是否独立?(Ⅱ)求两个部件的寿命都超过100小时的概率a.
(1998年试题,十二)已知线性方程组(I)的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22.…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组(Ⅱ)的通解,并说明理由.
随机试题
牡蛎可加工成淡菜、蚝豉、蚝油等制品。()
A.无痛性全程肉眼血尿B.终末血尿伴膀胱刺激征C.初始血尿D.疼痛伴血尿泌尿系结核血尿特点是
下颌向前运动时,髁突的运动是
商务部根据中国4家公司的申请并经调查公布了反倾销调查的终裁决定,认定从A国进口苯酚存在倾销,有关公司倾销幅度为10%—120%,决定自2004年2月1日起,对A国甲公司征收10%、乙公司征收120%的反倾销税,期限均为5年。下列哪些说法是不正确的?(
以下哪些是重新购建价格?()
企业提取盈余公积业务所涉及的会计核算内容是()。
企业为使项目完全达到设计生产能力,开展经营而投入的全部现实资金是()。
采用顺序分配法分配辅助生产费用时,应按辅助生产车间受益多少顺序排列,受益少的排列在先,先将费用分配出去,受益多的排列在后,后将费用分配出去。()
接团前,地陪应与旅行社()核实旅游团的用房情况是否与旅游接待计划相符。
下列对儿童发育迟缓与体重不足表述正确的是()。
最新回复
(
0
)