首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向最组α1,α2,…,αs线性无关,则下列向量组线性相关的是
设向最组α1,α2,…,αs线性无关,则下列向量组线性相关的是
admin
2013-04-04
43
问题
设向最组α
1
,α
2
,…,α
s
线性无关,则下列向量组线性相关的是
选项
A、α
1
-α
2
,α
2
-α
3
,α
3
-α
1
.
B、α
1
+α
2
,α
2
+α
3
,α
3
+α
1
.
C、α
1
-2α
2
,α
2
-2α
3
,α
3
-2α
1
.
D、α
1
+2α
2
,α
2
+2α
3
,α
3
+2α
1
.
答案
A
解析
(α
1
-α
2
)+(α
2
-α
3
)+(α
3
-α
1
)=0,
所以向量组α
1
-α
2
,α
2
-α
3
,α
3
-α
1
线性相关,故应选(A).
至于(B)、(C)、(D)的线性无关性可以用(β
1
,β
2
,β
3
)=(α
1
,α
2
,α
3
)C的方法来处理.
转载请注明原文地址:https://kaotiyun.com/show/1X54777K
0
考研数学一
相关试题推荐
(2009年)(Ⅰ)证明拉格朗日中值定理:若函数f(χ)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a).(Ⅱ)证明:若函数f(χ)在χ=0处连续,在(0,δ)(δ>0)内可导,且f′(χ
(96年)设函数f(x)在区间(一δ,δ)内有定义,若当x∈(一δ,δ)时,恒有|f(x)|≤x2,则x=0必是f(x)的
已知函数y=f(x)对一切x满足xf"(x)+3x[f’(x)]2=1-ex,若f’(x0))=0(x0)≠0),则
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)T是线性方程组Ax:O的一个基础解系,则A”x:0的基础解系可为
已知矩阵A=(Ⅰ)求A99;(II)设3阶矩阵B=(a1,a2,a3)满足B2=BA.记B100=(β1,β2,β3),将β1,β2,β3分别表示为a1,a2,a3的线性组合.
二阶常系数非齐次线性微分方程y"-4y’+3y=2e2x的通解为_______.
当x→0时,α(x)=kx2与β(x)=是等价无穷小,则k=________.
(2006年试题,23)设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解.(I)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设x为n维列向量,且xTx=1,若A=E-xxT,则|A|=0。
设n阶方阵A=(aij)n×n的每行元素之和为0,其伴随矩阵A*≠O,若a11的代数余子式A11≠0,求方程组A*x=0的通解.
随机试题
三相零式共阴极组整流电路中,将______定为晶闸管触发延迟角α的起点,即α=0点。
抗原提呈细胞
血站对献血者采集血液,应当符合以下规定
在进行月(季)度成本分析时,发现出现了属于预算定额规定的“政策性”亏损,则应该( )。
证券投资基金的发展趋势之一是从公司型基金为主向契约型基金为主。()
8,97,816,5306,()
以下属于教师一般权利的是()。(2015·海南)
[*]
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f’’(x)一f(x)=0在(0,1)内有根.
Economistsbelievethatjobearningsinfluencechoiceofoccupation.Theyacknowledgethatpeopleplacevaryingemphasis【C1】____
最新回复
(
0
)