首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是4×5矩阵,且A的行向量组线性无关,则下列说法错误的是 ( )
设A是4×5矩阵,且A的行向量组线性无关,则下列说法错误的是 ( )
admin
2018-01-12
95
问题
设A是4×5矩阵,且A的行向量组线性无关,则下列说法错误的是 ( )
选项
A、A
T
X=0只有零解
B、A
T
AX=0必有无穷多解
C、对任意的b,A
T
X=b有唯一解
D、对任意的b,AX=b有无穷多解
答案
C
解析
r(A)=4,A
T
是5×4矩阵,方程组A
T
X=b,对任意的b.若有解,则必有唯一解,但可能无解,即可能r(A
T
)=r(A)=4≠r(A
T
|b)=5,而使方程组无解.
其余(A),(B),(D)正确,自证.
转载请注明原文地址:https://kaotiyun.com/show/s0r4777K
0
考研数学一
相关试题推荐
在t=0时,两只桶内各装10L的盐水,盐的浓度为15g/L,用管子以2L/min的速度将净水输入到第一只桶内,搅拌均匀后的混合液又由管子以2L/min的速度被输送到第二只桶内,再将混合液搅拌均匀,然后用1L/min的速度输出,求在任意时刻t>0,从第
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.(1)确定a,使S1+S2达到最小,并求出最小值;(2)求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积.
设f(x)在x=a的邻域内二阶可导且f’(a)≠0,则=__________.
设f(x)为二阶可导的奇函数,且x<0时有f"(x)>0,f’(x)<0,则当x>0时有().
设随机变量U在[一2,2]上服从均匀分布,记随机变量求:(1)Cov(X,Y),并判定X与Y的独立性;(2)D[X(1+Y].
求幂级数的收敛域与和函数,并求的和.
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题①(I)的解必是(II)的解;②(Ⅱ)的解必是(I)的解;③(I)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(I)的解.其中,正确的是()
设都是正项级数.试证:(1)若收敛;(2)若收敛,且un单调减少,则收敛;(3)若都收敛;(4)若收敛.
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.证明:Aα1,Aα2,Aα3线性无关;
求微分方程y’’(3y’2—x)=y’满足初值条件y(1)=y’(1)=1的特解.
随机试题
下列哪项不是中度水肿的特点
产品生命周期是指某一个工业产品()所经历的时间
下列情形中,对地理信息数据安全造成不利影响的有()。
人民法院委托甲造价工程师事务所对争议工程的造价出具鉴定结论,施工企业发现该鉴定结论没有将由承包商采购的钢筋价款计算在内,因此申请重新鉴定。根据《关于民事诉讼证据的若干规定》,人民法院应()。
某工程量清单的工程数量有误,且减少量超过合同约定幅度,则进行结算时( )。
进口国在总配额内按国别和地区分配一定的配额,超过该配额便不准进口,它是()。
王强今年15周岁,一次在操场上玩游戏时,因为与班里的同学陈锋发生争执,愤怒之余用石块打中陈锋头部,导致陈锋因失血过多而死亡。对此,王强应承担()
上世纪90年代,柯达被公认为全球最有价值的五大品牌之一,据统计,柯达掌握着至少1000项数字图像、影像专利。然而市场瞬息万变,巅峰之后,柯达难以挽回地开始走下坡路。当然,柯达也曾经尝试转型,比如它曾想将成功的商业模式复制到新拓展的药品和化学行业,但由于缺乏
•Readthetextbelowaboutexpensesclaims.•Inmostofthelines(34-45)thereisoneextraword.Itiseithergrammatically
Ifyou’relikemostpeople,you’ve【B1】______fakelisteningmanytimes.Yougotohistoryclass,sitinthethirdrow,andlooks
最新回复
(
0
)