首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
admin
2018-08-02
83
问题
设c
1
,c
2
,…,c
n
均为非零实常数,A=(a
ij
)
n×n
为正定矩阵,令b
ij
=a
ij
c
i
c
j
(i,j=1,2,…,n),矩阵B=(b
ij
)
n×n
,证明矩阵B为正定矩阵.
选项
答案
由b
ij
=b
ij
,知B对称若x
1
,x
2
,…,x
n
不全为0,则c
1
x
1
,c
2
x
2
,…,c
n
x
n
小全为零,此时,(x
1
,x
2
,…,x
n
)B(x
1
,x
2
,…,x
n
)
T
=[*]a
ij
c
i
c
j
x
i
x
j
=[*]a
ij
(c
i
x
i
)(c
j
x
j
))>0,故B正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/s1j4777K
0
考研数学二
相关试题推荐
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ10)=f’(ξ2)=0.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
用正交变换法化二次型f(x1,x2,x3)=x12+x2x2+x3x2-4x1x2-4x1x3-4x2x3为标准二次型
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=O,则().
设f(x)连续,证明:∫0x[∫0tf(u)du]dt=∫0xf(t)(x-t)dt.
当0<x<时,证明:<sinx<x.
设A为三阶矩阵,Aαi=iαi(i=1,2,3),,求A.
设A,B皆为n阶矩阵,则下列结论正确的是().
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组Ax=0的通解.
随机试题
什么是行书?主要特点是什么?
对腭小凹的描述错误的是()
在UFO报表系统中的关键字主要有()。
下列进出口监管证件中实行“非一批一证”管理的是:
贷款不能归为次级类的是()。
古希腊的代表性弦乐器是________,代表性管乐器是________。
左边是给定纸盒的外表面,下列哪项不能由它折叠而成?
【2013-49】简述知识中心课程的主要特点。
阅读下列两则材料回答问题材料1关于中国革命的性质与动力,在中国共产党早期历史上,曾经出现以下两种观点。一种认为,每个阶级的革命,都要建立在每个阶级的力量上面;资产阶级的民主革命如果没有资产阶级的有力参加,便会失去革命的阶级意义和社会基础
Adietrichinproteinisthebestwaytoloseweight,leadingnutritionalscientistswillsaytoday.Millionscouldkeepintri
最新回复
(
0
)