首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
admin
2018-08-02
50
问题
设c
1
,c
2
,…,c
n
均为非零实常数,A=(a
ij
)
n×n
为正定矩阵,令b
ij
=a
ij
c
i
c
j
(i,j=1,2,…,n),矩阵B=(b
ij
)
n×n
,证明矩阵B为正定矩阵.
选项
答案
由b
ij
=b
ij
,知B对称若x
1
,x
2
,…,x
n
不全为0,则c
1
x
1
,c
2
x
2
,…,c
n
x
n
小全为零,此时,(x
1
,x
2
,…,x
n
)B(x
1
,x
2
,…,x
n
)
T
=[*]a
ij
c
i
c
j
x
i
x
j
=[*]a
ij
(c
i
x
i
)(c
j
x
j
))>0,故B正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/s1j4777K
0
考研数学二
相关试题推荐
设ξ1=为矩阵A=的一个特征向量.(I)求常数a,b及ξ1所对应的特征值;(Ⅱ)矩阵A可否相似对角化?若A可对角化,对A进行相似对角化;若A不可对角化,说明理由.
设A为m×n矩阵,且r(A)=m<n,则下列结论正确的是().
设矩阵A=相似于矩阵B= (I)求a,b的值; (II)求可逆矩阵P,使P-1AP为对角矩阵.
设矩阵A=且A3=0(I)求a的值; (Ⅱ)若矩阵X满足X—XA2一AX+AXA2=E,其中E为3阶单位矩阵,求X.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在η∈(a,b),使得ηf’(η)+f(η)=0.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
设A为n阶矩阵,且|A|=0,则A().
设A是m×n矩阵,且m>n,下列命题正确的是().
随机试题
恶性肿瘤的形态改变是多方面的,下列哪一项形态的改变可作为诊断肿瘤细胞的主要依据
降结肠癌并发急性肠梗阻患者,拟行急诊手术,其术式应首先考虑
患者男,38岁;查体:血压150/90mmHg,B超示双肾多发性囊肿,肾脏失去正常结构,父亲58岁死于尿毒症,哥哥B超肝脏及双肾多发性囊肿,有脑动脉瘤出血史。最可能的诊断是
根据《合同法》规定,建设工程合同包括()。
现金日记账的借方是根据收款凭证登记的,贷方是根据付款凭证登记的。()
普通准备金完全不允许计入商业银行资本基础的附属资本。()
张某预计甲种股票的价格在以后的几个月里将会由目前的80元上涨至:110元,于是打算大量买进,待价格上涨后再高价卖出,张某当时手中共有现金877元,为买进更多的股票以获取更大的利润,他向经纪人提出融资要求,经纪人审查后同意融资,双方商定利息按垫付款项的10%
预测我国人口总数到哪一年接近24亿人?( )请指出我国城镇人口哪一年超过乡村人口的一半?( )
现代汉语包括多种方言和___________,其中后者也叫作普通话,它是以___________作为基础方言,以___________为语法规范。(扬州大学2017)
下列关于属性、方法和事件的叙述中,______是错误的。
最新回复
(
0
)