首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=xTAx为-n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
设f(x)=xTAx为-n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
admin
2019-07-19
64
问题
设f(x)=x
T
Ax为-n元二次型,且有R
n
中的向量x
1
和x
2
,使得f(x
1
)>0,f(x
2
)<0.证明:存在R
n
中的向量x
0
≠0,使f(x
0
)=0.
选项
答案
令向量x
0
=-tx
1
+x
2
,其中t为待定实数,选择t,使f(x
1
)=0,即 x
0
T
Ax
0
=(tx
1
+x
2
)
T
A(tx
1
+x
2
) =(t
1
T
+x
2
T
)A(tx
1
+x
2
) =t
2
x
1
T
Ax
1
+2tx
1
T
Ax
2
+x
2
T
2Ax
2
=0, 记实数a=x
1
T
Ax
1
,b=x
1
T
Ax
2
,c=x
2
T
Ax
2
,则由题设条件知a>0,c<0.于是上式可写为at
2
+2bt+c=0. 由于关于t的这个二次方程有a>0,判别式△=4b
2
-4ac>0,故该方程必有实根t
0
≠0,于是有向量x
0
=tx
1
+ x
2
≠0(否则t
0
x
1
+x
2
=0,则x
2
=-t
0
x
1
,于是f(x
2
)=x
2
1
Ax
2
= (-t
0
x
1
)
T
A(-t
0
x
1
)=t
0
2
x
1
T
Ax
1
>0,它与已知的f(x
2
)<0相矛盾),使得 f(x
0
)=x
0
T
Ax
0
=at
0
2
+abt
0
+c=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/sAc4777K
0
考研数学一
相关试题推荐
游客乘电梯从底层到顶层观光,电梯于每个整点的5分、25分、55分从底层上行,设一游客早上8点X分到达底层,且X在[0,60]上服从均匀分布,求游客等待时间的数学期望.
设方阵A1与B1合同,A2与B2合同,证明:合同.
设有任意两个n维向量组α1,α2,...,αm和β1,β2,...,βm,若存在两组不全为零的数λ1,λ2,...,λm,k1,k2,...,km,使(λ1+k1)α+λ2+k2)α2+...+(λm+km)αm+=(λ1-k1)β1+(λ2-k2)β2
设X1,X2,…,Xn(n≥2)为来自总体N(μ,1)的简单随机样本,记,则下列结论中不正确的是()
Ω是由x2+y2=z2与z=a(a>0)所围成的区域,则三重积分在柱面坐标系下累次积分的形式为()
曲线积分∮C(x2+y2)ds,其中C是圆心在原点、半径为a的圆周,则积分值为()
曲面x2+cos(xy)+yz+x=0在点(0,1,-1)处的切平面方程为
设α1=,α2=,α3=,则3条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充要条件是()
设n阶矩阵A,B等价,则下列说法中,不一定成立的是()
设f(x)是连续函数,并满足∫f(x)sinxdx=cos2x+C,又F(x)是f(x)的原函数,且满足F(0)=0,则F(x)=_______.
随机试题
某企业2013年7月1日取得一项可供出售金融资产,成本为400万元,12月31日公允价值为360万元,所得税税率为25%,则年末该项金融资产对所得税影响的会计处理为()
如果曲线的水平渐近线存在,则常数a=()
房地产贷款程序的主要步骤为()等,最后是归还和结清贷款。
下列危险废物贮存设施的选址条件中,符合《危险废物贮存污染控制标准》要求的是()。
对于设计变更引起的工程价格调整,如在已标价的工程量清单中无适用的,或类似的子目单价,监理人可按照()的原则,商定或确定变更工作的单价。
下列有关生物的常识说法,错误的是()。
根据《国家赔偿法》,下列说法错误的是()。
2005年,世界卫生组织发布了一份名为《预防慢性病:一项至关重要的投资》的报告,其中一个与中国有关的数字庞大得令人吃惊:5580亿美元。这是中国从2005年到2015年由于心脏病、中风和糖尿病导致过早死亡而将损失的国民收入估值(按购买力平价计算)。值得注意
谈谈机械识记和意义识记及其在教学中的应用。
编写如下程序:PrivateSubCommand1_Click() DimxAsInteger,yAsInteger x=InputBox("输入第一个数") y=InputBox("输入第二个数") Callf(x,
最新回复
(
0
)