首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=xTAx为-n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
设f(x)=xTAx为-n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
admin
2019-07-19
45
问题
设f(x)=x
T
Ax为-n元二次型,且有R
n
中的向量x
1
和x
2
,使得f(x
1
)>0,f(x
2
)<0.证明:存在R
n
中的向量x
0
≠0,使f(x
0
)=0.
选项
答案
令向量x
0
=-tx
1
+x
2
,其中t为待定实数,选择t,使f(x
1
)=0,即 x
0
T
Ax
0
=(tx
1
+x
2
)
T
A(tx
1
+x
2
) =(t
1
T
+x
2
T
)A(tx
1
+x
2
) =t
2
x
1
T
Ax
1
+2tx
1
T
Ax
2
+x
2
T
2Ax
2
=0, 记实数a=x
1
T
Ax
1
,b=x
1
T
Ax
2
,c=x
2
T
Ax
2
,则由题设条件知a>0,c<0.于是上式可写为at
2
+2bt+c=0. 由于关于t的这个二次方程有a>0,判别式△=4b
2
-4ac>0,故该方程必有实根t
0
≠0,于是有向量x
0
=tx
1
+ x
2
≠0(否则t
0
x
1
+x
2
=0,则x
2
=-t
0
x
1
,于是f(x
2
)=x
2
1
Ax
2
= (-t
0
x
1
)
T
A(-t
0
x
1
)=t
0
2
x
1
T
Ax
1
>0,它与已知的f(x
2
)<0相矛盾),使得 f(x
0
)=x
0
T
Ax
0
=at
0
2
+abt
0
+c=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/sAc4777K
0
考研数学一
相关试题推荐
设区域D为:由以(0,0),(1,1),为顶点的四边形与以为顶点的三角形合成.而(X,Y)在D上服从均匀分布,求关于X和Y的边缘密度fX(x)和fY(y).
设有任意两个n维向量组α1,α2,...,αm和β1,β2,...,βm,若存在两组不全为零的数λ1,λ2,...,λm,k1,k2,...,km,使(λ1+k1)α+λ2+k2)α2+...+(λm+km)αm+=(λ1-k1)β1+(λ2-k2)β2
若α1,α2,α3线性相关,α2,α3,α4线性无关,则().
设α1,α2,…,αs都是n维向量,A是m×n矩阵,下列选项中正确的是().
设函数f’(x)在[a,b]上连续,且f(a)=0,证明:∫abf2(x)dx≤∫ab[f’(x)]2dx.
记平面区域D={(x,y)||x|+|y|≤1},计算如下二重积分:(1)其中f(t)为定义在(-∞,+∞)上的连续正值函数,常数a>0,b>0;(2)I2=(eλx-e-λy)da,常数λ>0.
设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充分条件是A的
设A是,n×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0
求极限
已知函数试求其单调区间、极值以及函数图形的凹凸区间、拐点和渐近线,并画出函数的图形。
随机试题
(2013年4月,2010年10月,2009年10月,2009年4月)1956年,陈云在中共八大上提出了________的思想。
Conversationbeginsalmostthemomentwecomeintocontactwithanotherandcontinuesthroughouttheday【C1】______theaidofcel
Yettheseglobaltrendshidestarklydifferentnationalandregionalstories.VittorioColao,thebossofVodafone,whichoperat
为得到高信噪比的图像,应选择
健康是身体上、_______和_______的完好状态,而不仅是没有疾病和虚弱。
下列对疾病定义的描述中,不正确的是
A.罚款B.责令改正C.通报批评D.吊销执业证书E.暂停执业活动医师判断患者为非正常死亡但未按照规定报告,应给予的行政处罚是()
属于物业管理企业运行机制的是()。
在企业中,出于内源性动机的员工着重的是( )。
Thispassagegivesageneraldescriptionofwhyrecessionsoccurandhowtheymakeacountry’seconomyworse.Thevalueofgood
最新回复
(
0
)