首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
试求平面x+y一z=0与圆柱面x2+y2+z2一xy—yz一zx一1=0相交所成的椭圆的面积.
试求平面x+y一z=0与圆柱面x2+y2+z2一xy—yz一zx一1=0相交所成的椭圆的面积.
admin
2018-11-22
45
问题
试求平面x+y一z=0与圆柱面x
2
+y
2
+z
2
一xy—yz一zx一1=0相交所成的椭圆的面积.
选项
答案
根据分析,由坐标原点O至椭圆上的任意一点(x,y,z)的距离d=[*]之最大、最小值,就是该椭圆的长、短半轴.为此,设拉朗格日函数为L(x,y,z,λμ)=x
2
+y
2
+z
2
+λ(x+y-z)- μ(x
2
+y
2
+z
2
-xy-yz-zx-1) .令方程组 [*] 将上述方程组中的前三个式子分别乘以x、y、z后相加,得2(x
2
+y
2
+z
2
)+λ(x+y—z)一2μ(x
2
+y
2
+z
2
一xy一yz一zx)=0. 再将上述方程组的后两个式子化为d
2
=x
2
+y
2
+z
2
μ. 这充分说明μ就是d
2
的极值,从而说明[*]就是d的极值.于是,问题就转化为求μ. 由上述方程组的前四个式子消去参数λ,得 [*] 由此可知,此式的两个根μ
1
、μ
2
就是d
2
的极大值、极小值,即a
2
与b
2
. 由于μ
1
μ
2
=4,故所求的椭圆的面积是S=πab=[*]=2π.
解析
(1)若能求得该椭圆的长、短半轴a与6,则椭圆的面积为S=πab.
(2)由圆柱面方程x
2
+y
2
+z
2
一xy一yz一zx一1=0可知,此圆柱关于坐标原点0是对称的,故此圆柱的中心轴为通过坐标原点0的某一直线.
(3)由平面方程x+y—z=0可知,它也是通过坐标原点0的.所以,此平面上的椭圆
截线必以坐标原点0为其中心点.
若用解析几何的方法来求解,可知圆柱面方程
x
2
+y
2
+z
2
一xy一yz一zx一1=0
所表示圆柱的中心轴为直线L:x=y=z,且其纬圆半径为
再由直线L与平面x+y—z=0法线间的夹角的余弦为
以及面积的投影关系A=Scosθ,可得
转载请注明原文地址:https://kaotiyun.com/show/HBM4777K
0
考研数学一
相关试题推荐
下列矩阵中与合同的矩阵是()
已知随机变量X服从标准正态分布,Y=2X2+X+3,则X与Y()
将f(x)=lnx展开成x-2的幂级数.
已知方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。
已知α1,α2均为2维向量,矩阵A=[2α1+α2,α1一α2],β=[α1,α2],若行列式|A|=6,则|B|=________.
如果用X,Y分别表示将一枚硬币连掷8次正反面出现的次数,则t的一元二次方程t2+Xt+Y=0有重根的概率是______。
设随机变量X服从正态分布N(μ,σ2),已知P{X≤2}=0.062,P{X≥9}=0.025,则概率P{|X|≤4}=_______。(Ф(1.54)=0.938,Ф(1.96)=0.975)
求极限
(14年)求极限
设f(x)=(I)若f(x)处处连续,求a,b的值;(II)若a,b不是(I)中求出的值时f(x)有何间断点,并指出它的类型.
随机试题
驾驶机动车在这种情况下可以右转弯。
领导者树立科学的政绩观的基本要求。
下列选项中,属于合同法定解除条件的是()。
在拱的安装施工中,拱段接头采用现浇混凝土时必须保证其强度达到()以上时方可进行拱上建筑施工。
某有限责任公司的股东张某发现本公司经理在经营中收受贿赂,给公司全体股东造成了损失。如果张某准备对该经理提起诉讼,下列说法正确的有()。
全国首家茶文化主题公园是()。
为什么说艺术是社会生活的反映?
唐太宗:魏征
支持性资源过程的人事招聘过程应届于()生命周期阶段。
Allofthepeopleinthelabwere________bythestrangeresultsoftheexperiment.
最新回复
(
0
)