首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
试求平面x+y一z=0与圆柱面x2+y2+z2一xy—yz一zx一1=0相交所成的椭圆的面积.
试求平面x+y一z=0与圆柱面x2+y2+z2一xy—yz一zx一1=0相交所成的椭圆的面积.
admin
2018-11-22
31
问题
试求平面x+y一z=0与圆柱面x
2
+y
2
+z
2
一xy—yz一zx一1=0相交所成的椭圆的面积.
选项
答案
根据分析,由坐标原点O至椭圆上的任意一点(x,y,z)的距离d=[*]之最大、最小值,就是该椭圆的长、短半轴.为此,设拉朗格日函数为L(x,y,z,λμ)=x
2
+y
2
+z
2
+λ(x+y-z)- μ(x
2
+y
2
+z
2
-xy-yz-zx-1) .令方程组 [*] 将上述方程组中的前三个式子分别乘以x、y、z后相加,得2(x
2
+y
2
+z
2
)+λ(x+y—z)一2μ(x
2
+y
2
+z
2
一xy一yz一zx)=0. 再将上述方程组的后两个式子化为d
2
=x
2
+y
2
+z
2
μ. 这充分说明μ就是d
2
的极值,从而说明[*]就是d的极值.于是,问题就转化为求μ. 由上述方程组的前四个式子消去参数λ,得 [*] 由此可知,此式的两个根μ
1
、μ
2
就是d
2
的极大值、极小值,即a
2
与b
2
. 由于μ
1
μ
2
=4,故所求的椭圆的面积是S=πab=[*]=2π.
解析
(1)若能求得该椭圆的长、短半轴a与6,则椭圆的面积为S=πab.
(2)由圆柱面方程x
2
+y
2
+z
2
一xy一yz一zx一1=0可知,此圆柱关于坐标原点0是对称的,故此圆柱的中心轴为通过坐标原点0的某一直线.
(3)由平面方程x+y—z=0可知,它也是通过坐标原点0的.所以,此平面上的椭圆
截线必以坐标原点0为其中心点.
若用解析几何的方法来求解,可知圆柱面方程
x
2
+y
2
+z
2
一xy一yz一zx一1=0
所表示圆柱的中心轴为直线L:x=y=z,且其纬圆半径为
再由直线L与平面x+y—z=0法线间的夹角的余弦为
以及面积的投影关系A=Scosθ,可得
转载请注明原文地址:https://kaotiyun.com/show/HBM4777K
0
考研数学一
相关试题推荐
设随机变量X在(1,4)上服从均匀分布,当X=x(1<x<4)时,随机变量Y的条件密度函数为fY|X(y|x)=(Ⅰ)求Y的密度函数;(Ⅱ)求X,Y的相关系数;(Ⅲ)令Z=X—Y,求Z的密度函数.
设函数,f(x)在(-∞,+∞)内
计算行列式|A|=之值.
设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程。[附表]:t分布表,P{t(n)≤tp(n)}=p
证明:当x>0时,.
设A是n阶反对称矩阵,证明(E一A)(E+A)-1是正交矩阵.
已知=0,求a,b的值.
设f(x)=|x|sin2x,则使f(n)(0)存在的最高阶数n=_______.
设f(x)、g(x)均为连续二阶可导的函数,若曲线积分其中L为平面上任意一条简单封闭曲线.(1)试求:f(x)、g(x)使得f(0)=g(0)=0.(2)计算沿任意一条曲线从点(0,0)到点(1,1)的曲线积分.
判断如下命题是否正确:设无穷小un~vn(n→∞),若级数也收敛.证明你的判断.
随机试题
声音在哪个介质中传播最快?()
下列符合毒血症的描述是
脓肿切开引流的目的是
处方书写的要求A、急诊处方B、协定处方C、门诊处方D、中药饮片处方E、超剂量用药处方不得超过7日用量
下列哪种心肌细胞4期自动去极化速度最大?()
与其他融资方式相比,下列属于融资租赁筹资方式特点的有()。
火星的质量和半径分别约为地球的和,地球表面的重力加速度为g,则火星表面的重力加速度约为()。
冻结、划拨属于间接执行性强制措施。()
蜜蜂:蜂蜜
A、Blue.B、Black.C、Brown.D、Green.C
最新回复
(
0
)