首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(12年)(I)证明方程xn+n-1+…+x=1(n为大于1的整数)在区间内有且仅有一个实根; (Ⅱ)记(I)中的实根为xn,证明存在,并求此极限.
(12年)(I)证明方程xn+n-1+…+x=1(n为大于1的整数)在区间内有且仅有一个实根; (Ⅱ)记(I)中的实根为xn,证明存在,并求此极限.
admin
2018-07-27
80
问题
(12年)(I)证明方程x
n
+
n-1
+…+x=1(n为大于1的整数)在区间
内有且仅有一个实根;
(Ⅱ)记(I)中的实根为x
n
,证明
存在,并求此极限.
选项
答案
(I)令f(x)=x
n
+x
n-1
+…+x一1(n>1),则f(x)在[*]上连续,且[*] 由闭区间上连续函数的介值定理知.方程f(x)=0在[*]内至少有一个实根. [*] f’(x)=nx
n-1
+(n一1)x
n-2
+…+2x+1>1>0. 故f(x)在[*]内单调增加. 综上所述,方程f(x)=0在[*]内有且仅有一个实根. (Ⅱ)由[*]知数列{x
n
}有界,又 x
n
n
+x
n
n-1
+…+x
n
=1 x
n+1
n-1
+x
n+1
n
+x
n+1
n-1
+…+x
n+1
=1 因为x
n+1
n+1
>0,所以 x
n
n
+x
n
n-1
+…+x
n
>x
n+1
n
+x
n+1
n-1
+…+x
n+1
于是有 x
n
>x
n+1
.n=1,2,…, 即{x
n
}单调减少. 综上所述,数列{x
n
}单调有界.故{x
n
}收敛. [*] 令n→∞并注意到[*]<x
n
<x
1
<1,则有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/sBj4777K
0
考研数学二
相关试题推荐
[*]
A、 B、 C、 D、 D
(2000年试题,八)设函f(x)在[0,π]上连续,且试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
三阶常系数线性齐次微分方程y"’=2y"+y’-2y=0的通解为y=________.
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
设f(x)在[0,0](a>0)上非负且二阶可导,且f(0)=0,f’’(x)>0,为y=f(x),y=0,x=a围成区域的形心,证明:
求极限:
求极限:
A、 B、 C、 D、 CS(x)可看作是f(x)作偶延拓后再作周期为2的周期延拓后的函数的傅里叶级数之和.由于S(x)是以2为周期的偶函数,所以由傅里叶级数的收敛定理知
设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶数n为()
随机试题
能力的发展水平在人群中的分布大概是
设f(x)是周期为2π的函数,f(x)在[-π,π]上的表达式为.S(x)是f(x)的傅里叶级数的和函数,则S(0)=_______.
在Excel2003中,单元格中只能显示公式计算的结果,一般不显示输入的公式。()
乳核肿块的直径是
根据资金时间分布的不同和评价的需要,常用的资金等值换算公式有()。
依法定方式做成票据并在票据上盖章,将票据交付给收款人的人,称为()。
某市化妆品生产公司为增值税一般纳税人,兼营商品加工、批发、零售和进出口业务,2019年7月相关经营业务如下:(1)进口高档化妆品一批,支付国外的买价220万元、购货佣金6万元、国外的经纪费4万元;支付运抵我国海关地前的运输费用20万元、装卸费用和保险费用
()是从多角度对个体行为进行标准化评估的各种方法的总称。
PASSAGEONEWhatcanweinferfromthelastparagraph?
A、Pleaseopenthedoor.B、Don’topenthedoor.C、Sheisnotsurewhethertoopenthedoor.D、Shedoesn’tagree.AM:Wouldyoumi
最新回复
(
0
)