首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3)是5×3矩阵β1,β2是齐次线性方程组ATx=0的基础解系,试证α1,α2,α3,β1,β2线性无关
设A=(α1,α2,α3)是5×3矩阵β1,β2是齐次线性方程组ATx=0的基础解系,试证α1,α2,α3,β1,β2线性无关
admin
2019-12-26
47
问题
设A=(α
1
,α
2
,α
3
)是5×3矩阵β
1
,β
2
是齐次线性方程组A
T
x=0的基础解系,试证α
1
,α
2
,α
3
,β
1
,β
2
线性无关
选项
答案
因β
1
,β
2
是齐次线性方程组A
T
x=0的基础解系,所以有5-r(A
T
)=2,即r(A)=3,故α
1
,α
2
,α
3
线性无关 又 [*] 有 α
j
T
β
i
=0(i=1,2,j=1,2,3). 设 k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
β
1
+k
5
β
2
=0, 令 γ=k
1
α
1
+k
2
α
2
+k
3
α
3
=-k
4
β
1
-k
5
β
2
, 则 (k
1
α
1
+k
2
α
2
+k
3
α
3
,-k
4
β
1
-k
5
β
2
)=(γ,γ)=0. 因而 k
1
α
1
+k
2
α
2
+k
3
α
3
=0,-k
4
β
1
-k
5
β
2
=0, 而α
1
,α
2
,α
3
及β
1
,β
2
是线性无关的,故k
1
=k
2
=k
3
=0,k
4
=k
5
=0,从而α
1
,α
2
,α
3
,β
1
,β
2
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/sGD4777K
0
考研数学三
相关试题推荐
已知3阶矩阵A满足|A+E|=|A一E|=|4E一2A|=0,求|A3一5A2|.
A为三阶实对称矩阵,A的秩为2,且(1)求A的特征值与特征向量.(2)求矩阵A.
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A—E)X=0的(A+E)X=0的解.(1)求A的特征值与特征向量.(2)求矩阵A.
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
设3阶矩阵A有3个特征向量η1=(1,2,2)T,η2=(2,一2,1)T,η3=(一2,一1,2)T,它们的特征值依次为1,2,3,求A.
已知α=(1,1,一1)T是A=的特征向量,求a,b和α的特征值λ.
求常数a,使得向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但是β1,β2,β3不可用α1,α2,α3线性表示.
(1)如果矩阵A用初等列变换化为B,则A的列向量组和B的列向量组等价.(2)如果矩阵A用初等行变换化为B,则A的行向量组和B的行向量组等价.
随机试题
炎症显像时,标记白细胞所使用的放射性药物是
关于血栓闭塞性脉管炎的治疗,下列哪项是错误的
有机磷杀虫剂在人体分布最多的器官为
【背景资料】某电力建设工程超大和超重设备多,制造分布地域广,运输环节多,建设场地小,安装均衡协调难度大,业主将该工程的设备管理工作通过招投标方式分包给一专业设备管理公司(以下简称设备公司),设备安装由一家安装公司承担。该工程变压器(运输尺寸11.1×4
驱逐出境由宣判法院执行。( )
标志着我国新一轮课改正式启动的通知文件是()。
当前的中国,利益多元、观念多样、思想多变,这让道德领域呈现复杂图景,也让人们面临更艰难的选择。在扶起跌倒老人或许惹上官司、爱心捐赠恐被挪作他用的疑虑中,善念在负面的想象中迟疑,善行因利益的考量而延宕。一个经历着深刻转型的社会,有这样的道德困惑可以理解,但更
西方人习惯于以十分肯定的方式表达自己的意见,与此不同的是日本人通常是在充分考虑了对方的感情与看法之后才讲话和采取行动。(西南大学2010)
函数f(χ)=的单调减少区间是_______.
(1)将考生文件夹下ME文件夹中的文件夹WORK删除。(2)在考生文件夹下YOU文件夹中建立一个名为SET的新文件夹。(3)将考生文件夹下RUM文件夹中的文件PASE.BMP设置为只读和隐藏属性。(4)将考生文件夹下JIMI文件夹中的文件FENE.P
最新回复
(
0
)