首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A—E)X=0的(A+E)X=0的解. (1)求A的特征值与特征向量. (2)求矩阵A.
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A—E)X=0的(A+E)X=0的解. (1)求A的特征值与特征向量. (2)求矩阵A.
admin
2018-11-20
78
问题
设3阶矩阵A的各行元素之和都为2,又α
1
=(1,2,2)
T
和α
2
=(0,2,1)
T
分别是(A—E)X=0的(A+E)X=0的解.
(1)求A的特征值与特征向量.
(2)求矩阵A.
选项
答案
(1)α
1
=(1,2,2)
T
是(A—E)X=0的解,即Aα
1
=α
1
,于是α
1
是A的特征向量,特征值为1. 同理得α
2
是A的特征向量,特征值为一1. 记α
3
=(1,1,1)
T
,由于A的各行元素之和都为2,Aα
3
=(2,2,2)
T
=2α
3
,即α
3
也是A的特征向量,特征值为2. 于是A的特征值为1,一1,2. 属于1的特征向量为cα
1
,c≠0. 属于一1的特征向量为cα
2
,c≠0. 属于2的特征向量为cα
3
,c≠0. (2)建立矩阵方程A(α
1
,α
2
,α
3
)=(α
1
,一α
2
,2α
3
),用初等变换法解得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/qwW4777K
0
考研数学三
相关试题推荐
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f()一1,f(1)=0.证明:存在η∈(,1),使得f(η)=η;
设A=E一ααT,其中α为n维非零列向量.证明:A2=A的充分必要条件是α为单位向量;
设A为n阶矩阵,A2=A,则下列成立的是().
设线性方程组有非零解,则组成基础解系的线性无关的解向量有().
设随机变量X服从几何分布,其分布列为P(X=k)=(1一p)k一1p=pqk一1,0<q<1,q=1一p,k=1,2,…,求E(X)与D(X).
设A,B为随机事件,且(Ⅰ)求二维随机变量(X,Y)的概率分布;(Ⅱ)求X和Y的相关系数ρXY。
设A是一个五阶矩阵,A*是A的伴随矩阵,若η1,η2是齐次线性方程组Ax=0的两个线性无关的解,则r(A*)=________。
已知X1,…,Xn是来自总体X容量为n的简单随机样本,其均值和方差分别为与S2.如果EX=μ,DX=σ2,试证明:的相关系数
若行列式的第j列的每个元素都加1,则行列式的值增加
随机试题
天冬氨酸在体内参与的代谢途径有()(2011年)
A.苇茎汤B.清营汤C.导赤散D.仙方活命饮E.黄连解毒汤具有透热养阴功效的清热剂为
A.《新编药物学》B.《妊娠期和哺乳期用药》C.《中华人民共和国药典》D.《药物流行病学》E.《注射药物手册》查询妊娠及哺乳期用药可首选的书籍是()。
患者男,81岁,癌症晚期。处于临终状态,感到恐惧和绝望。当其发怒时,护士应
实行会员分级结算制度的期货交易所会员由()组成。
行政裁决与行政仲裁的共同点有()。
根据下列资料,回答下列问题。2010年全年,北京地区进出口总额3014.1亿美元,比上年增长40.3%。其中出口554.7亿美元,增长14.7%;进口2459.4亿美元,增长47.8%。“十一五”期间,北京地区进出口总额累计达到11389.3亿
企业破产,老板逃跑。欠工人几个月工资。政府代企业给员工补发工资2400万。你如何看待这件事?
设f(χ,y)=2(y-χ2)2-χ7-y2,(Ⅰ)求f(χ,y)的驻点;(Ⅱ)求f(χ,y)的全部极值点,并指明是极大值点还是极小值点.
plates定位句为“…thereisasetofChinesecrockerytofurnishmydiningroomtable.ButwhenIopenedthecaseIfoundthatacupwas
最新回复
(
0
)