首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三维空间中一容器由平面z=0,z=1及介于它们之间的曲面S所围成。过z轴上任意一点(0,0,z)(0≤z≤1)作垂直于z轴的平面,与该容器截的水平面为D(z),该截面是半径为r(z)=的圆面。若以每秒3单位体积的均匀速度往该容器内注水,并假设开始时容器是
设三维空间中一容器由平面z=0,z=1及介于它们之间的曲面S所围成。过z轴上任意一点(0,0,z)(0≤z≤1)作垂直于z轴的平面,与该容器截的水平面为D(z),该截面是半径为r(z)=的圆面。若以每秒3单位体积的均匀速度往该容器内注水,并假设开始时容器是
admin
2019-12-06
45
问题
设三维空间中一容器由平面z=0,z=1及介于它们之间的曲面S所围成。过z轴上任意一点(0,0,z)(0≤z≤1)作垂直于z轴的平面,与该容器截的水平面为D(z),该截面是半径为r(z)=
的圆面。若以每秒3单位体积的均匀速度往该容器内注水,并假设开始时容器是空的。
(Ⅰ)写出注水过程中t时刻水面高度z=z(t)与相应的水体积V=V(t)之间的关系式;
(Ⅱ)求水表面上升速度最大时的水面高度;
(Ⅲ)求灌满容器所需的时间。
选项
答案
(Ⅰ)由题意得,t时刻注人容器中水的体积为3t,设此时水面高度为z(t),由截面已知的立体体积公式得 v(t)=∫
0
z(t)
D(z)dz=∫
0
z(t)
πr
2
(z)dz=π∫
0
z(t)
[(1-z)
2
+z
2
]dz, 依题意得π∫
0
z(t)
[(1-z)
2
+z
2
]dz=3t。 (Ⅱ)在(Ⅰ)中结论的两边对t求导得π[(1-z)
2
+z
2
][*]=3, 即[*], 因此求[*]的最大值即求f(z)=(1-z)
2
+z
2
在[0,1]上的最小值点。 由f’=2z-2(1-z) =2(2z-1)= [*] 可知,当z=1/2时,f(z)在[0,1]上取最小值,故z=1/2时水面上升速度最大。 (Ⅲ)灌满容器时体积为V(t)=∫
0
1
D(z)dz=π∫
0
z(t)
[(1-z)
2
+z
2
]dz=[*], 因此灌满容器所需的时间为[*]秒。
解析
转载请注明原文地址:https://kaotiyun.com/show/sTA4777K
0
考研数学二
相关试题推荐
设f(x)=∫0xdt∫0ttln(1+u2)du,g(x)=∫0sinx2(1-cost)dt,则当x→0时,f(x)是g(x)的().
向量组α1=(1,3,5,一1)T,α2=(2,一1,一3,4)T,α2=(6,4,4,6)T,α4=(7,7,9,1)T,α5=(3,2,2,3)T的极大线性无关组是()
微分方程的通解为_______.
设α,β为三维非零列向量,(α,β)=3,A=αβT,则A的特征值为_______.
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有
求f(x,y)=x+xy一x2一y2在闭区域D={(x,y)|0≤x≤1,0≤y≤2)上的最大值和最小值.
质量为1g的质点受外力作用作直线运动,外力和时间成正比,和质点的运动速度成反比,在t=10s时,速度等于50cm/s.外力为39.2cm/s2,问运动开始1min后的速度是多少?
当x→0+时,若lnα(1+2x),(1-cosx)1/α均是比x高阶的无穷小,则α的取值范围是()
若f"(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内
当x→0时,(1+xsin2x)a-1~1-cosx,求a.
随机试题
化学有害因素的职业接触限值包括四类,其中工作地点、在一个工作日内、任何时间有毒化学物质均不应超过的浓度是指()。
在软土地基上填筑路堤时,如软基处理不当,易产生的病害有()。
建筑安装工程费由( )组成。
在下列情况中,投资组合风险分散效果好的是()。[2015年6月证券真题]
某公司2015年管理用财务分析体系中,权益净利率为25%,净经营资产净利率为15%,净财务杠杆为1.43,则税后利息率为()。
下列赠与合同中,不得主张任意撤销的有()。
商业银行发行金融债券应具备()条件。
根据以下资料,回答101-105题。2007年,北京市的广告经营单位达到17596家,比2006年增长了14.3%。其中,广告公司14944家,比2006年增长了13.1%。全市广告从业人员127396人,比2006年增加了0.3%。广告经营额持续
[*]
A、Jefferson’sviewsaboutcommercializedagriculture.B、Internationaltradeinthe19thcentury.C、Improvementsinfarmmachiner
最新回复
(
0
)