首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组其中0≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
设齐次线性方程组其中0≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
admin
2020-02-27
33
问题
设齐次线性方程组
其中0≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
选项
答案
由题设,方程组的系数矩阵为[*] 则[*] 当a∈b且a+(n-1)b≠0,即a≠(1-n)b时,方程组仅有零解. 当a=b时,对A可作初等行变换化为阶梯形[*] 则不难求得原方程组的基础解系为[*] 因此方程组的全部解是x=k
1
ξ
1
+k
2
ξ
2
+…+k
n-1
ξ
n-1
,其中k
1
,k
2
,…,k
n-1
为任意常数. 当a=(1-n)b时,同样对A作初等行变换化为阶梯形[*] 则可得此时基础解系为ξ=[*] ,从而原方程组的全部解是kξ,其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/skD4777K
0
考研数学三
相关试题推荐
设f(x)为连续函数,F(y)=∫0yf(x)dx,则∫01dz∫0zF(y)dy=()
微分方程y"一4y=e2x+x的特解形式为().
已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα一2A2α,那么矩阵A属于特征值A=一3的特征向量是()
设X1,X2,…,Xn,…是独立同分布的随机变量序列,且均服从参数为λ(λ>1)的指数分布,记Φ(x)为标准正态分布函数,则().
设在区间(一∞,+∞)内f(x)>0,且当忌为大于0的常数时有f(x+k)=,则在区间(一∞,+∞)内函数f(c)是()
设随机变量X与Y独立,且Y~N(0,1),则概率P{XY≤0}的值为
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,试证存在ξ,η∈(a,b),使eη-ξ[f(η)+f’(η)]=1。
设向量组α3=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,0)T线性表示。求a的值;
微分方程ydx+(x一3y2)dy=0满足条件y|x=1=l的特解为_________。
假设随机变量X1,X2,…,X2n独立同分布,且E(Xi)=D(Xi)=1(1≤i≤2n),如果Yn=,则当常数c=__________时,根据独立同分布中心极限定理,当n充分大时,Yn近似服从标准正态分布。
随机试题
Amongallthemalignancies,lungcanceristhebiggestkiller;morethan100,000Americansdieofthedisease.Givingupsmoking
不孕症伴有痛经,常常发生于()
A.强心苷B.利多卡因C.苯妥英钠D.维拉帕米E.硝苯地平
女,32岁,肿物脱出阴道外9月。妇科检查:宫颈脱出阴道口外5cm,余无异常
A.煎煮法B.浸渍法C.渗漉法D.双提法E.水蒸气蒸馏法冠心丹参片中丹参的提取采用()
甲将头痛粉冒充海洛因欺骗乙,让乙出卖“海洛因”,然后二人均分所得款项。乙出卖后获款4000元,但在未来得及分赃时,被公安机关查获。关于本案,下列哪些说法是正确的?()
美国著名心理学家马斯洛在“需求层次论”中,将人类生活需求分成五个层次,下述()不属于该五个层次中的内容。
对综合理财服务的理解,下列说法错误的是()。
下列选项中,不属于手臂骨骼的是()。
虐待罪,是指对共同生活的家庭成员经常以打骂、捆绑、冻饿、限制自由、凌辱人格、不给治病或者强迫过度劳动等方法,从肉体上和精神上进行摧残迫害,情节恶劣的行为。根据定义,下列不构成虐待罪的是()。
最新回复
(
0
)