首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β1,β2是非齐次线性方程组AX=b的两个不同的解,α1,α2是其对应的齐次线性方程组的基础解系,k1,k2是任意常数,则方程组AX=b的通解必是( )
已知β1,β2是非齐次线性方程组AX=b的两个不同的解,α1,α2是其对应的齐次线性方程组的基础解系,k1,k2是任意常数,则方程组AX=b的通解必是( )
admin
2017-05-18
73
问题
已知β
1
,β
2
是非齐次线性方程组AX=b的两个不同的解,α
1
,α
2
是其对应的齐次线性方程组的基础解系,k
1
,k
2
是任意常数,则方程组AX=b的通解必是( )
选项
A、k
1
α
1
+k
2
(α
1
+α
2
)+
B、k
1
α
1
+k
2
(α
1
-α
2
)+
C、k
1
α
1
+k
2
(β
1
+β
2
)+
D、k
1
α
1
+k
2
(β
1
-β
2
)+
答案
B
解析
排除A:
不是方程组AX=b的解;
排除C:β
1
+β
2
不是方程组AX=0的解;
排除D:虽然α
1
,β
1
-β
2
是AX=0的解,但α
1
,β
1
-β
2
是否线性无关未知,故不能断定它们构成AX=0的基础解系.
选项B:AX=-b的通解由Ax=0通解加上Ax=b的特解组成.
因为Aβ
1
=b,Aβ
2
=b,∴A(β
1
+β
2
)=2b,故
是Ax=b的特解.
因为α
1
,α
2
是Ax=0的基础解系,所以α
1
,α
2
无关且Aα
1
=0,Aα
2
=0,从而A(α
1
-α
2
)=0且α
1
与α
1
-α
2
无关(设k
1
α
1
+k
2
(α
1
-α
2
)=0,则(k
1
+k
2
)α
2
-k
2
α
2
=0,因α
1
,α
2
无关,从而k
1
=k
2
=0),所以α
1
,α
1
-α
2
可做Ax=0的基础解系,从而B正确.
转载请注明原文地址:https://kaotiyun.com/show/squ4777K
0
考研数学一
相关试题推荐
[*]
A、发散B、条件收敛C、绝对收敛D、收敛性与λ有关C
求极限
设f(x)连续,(A为常数),求φ’(t)并讨论φ’(x)在x=0处的连续性.
设m,n均是正整数,则反常积分的收敛性
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
观察知道,此题为“0/0”型.但不能用洛必达法则求解.应该以去掉分子中的模符号“||”为化简方向.
设(X1,X2,…,X3)(n≥2)为标准正态总体,X的简单随机样本,则().
设函数f(x)在[0,π]上连续,且f(x)sinxdx=0,f(x)cosxdx=0.证明:在(0,π)内.f(x)至少有两个零点.
证明:∫0πxasinxdx.∫0π/2a-cosxdx≥π3/4,其中a>0为常数.
随机试题
Thereappeartobepeakperiodsinthedaywhenweareatourzaniest(荒谬可笑的).Thesearetwohourssometimebetweeneighta.m.
计算机网络的特点是
下列除哪项外均为痢疾的治法
不是肛门坐浴的作用的是
招标采购是我国政府和企业采购的基本方法之一,其优点是()
公示中标候选人时,需明确的内容不包括()。
实行会员分级结算制度的期货交易所会员由()组成。
【2015河南邓州】班集体形成的主要标志之一是()。
一个病人服用某种新药后被治愈的概率为90%,那么4个使用这种新药的病人中有至少3个被治愈的概率:
Forgetmilkydrinks,hotwaterbottlesorcurlingupwithagoodbook.Therealsecrettoagoodnight’ssleepmaybewhereyou
最新回复
(
0
)