首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β1,β2是非齐次线性方程组AX=b的两个不同的解,α1,α2是其对应的齐次线性方程组的基础解系,k1,k2是任意常数,则方程组AX=b的通解必是( )
已知β1,β2是非齐次线性方程组AX=b的两个不同的解,α1,α2是其对应的齐次线性方程组的基础解系,k1,k2是任意常数,则方程组AX=b的通解必是( )
admin
2017-05-18
41
问题
已知β
1
,β
2
是非齐次线性方程组AX=b的两个不同的解,α
1
,α
2
是其对应的齐次线性方程组的基础解系,k
1
,k
2
是任意常数,则方程组AX=b的通解必是( )
选项
A、k
1
α
1
+k
2
(α
1
+α
2
)+
B、k
1
α
1
+k
2
(α
1
-α
2
)+
C、k
1
α
1
+k
2
(β
1
+β
2
)+
D、k
1
α
1
+k
2
(β
1
-β
2
)+
答案
B
解析
排除A:
不是方程组AX=b的解;
排除C:β
1
+β
2
不是方程组AX=0的解;
排除D:虽然α
1
,β
1
-β
2
是AX=0的解,但α
1
,β
1
-β
2
是否线性无关未知,故不能断定它们构成AX=0的基础解系.
选项B:AX=-b的通解由Ax=0通解加上Ax=b的特解组成.
因为Aβ
1
=b,Aβ
2
=b,∴A(β
1
+β
2
)=2b,故
是Ax=b的特解.
因为α
1
,α
2
是Ax=0的基础解系,所以α
1
,α
2
无关且Aα
1
=0,Aα
2
=0,从而A(α
1
-α
2
)=0且α
1
与α
1
-α
2
无关(设k
1
α
1
+k
2
(α
1
-α
2
)=0,则(k
1
+k
2
)α
2
-k
2
α
2
=0,因α
1
,α
2
无关,从而k
1
=k
2
=0),所以α
1
,α
1
-α
2
可做Ax=0的基础解系,从而B正确.
转载请注明原文地址:https://kaotiyun.com/show/squ4777K
0
考研数学一
相关试题推荐
若n阶矩阵A满足r(A+E)+r(A-E)=n,且A≠E,则A必有一个特征值________.
设总体X的概率密度为其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.求θ的矩估计量;
设y(x)为微分方程y’’-4y’+4y=0满足初始条件r(0)=0,r’(0)=2的特解,则∫01y(x)dx=___________.
当x→0时,下列四个无穷小量中,哪一个是比其他三个更低阶的无穷小量?().
设总体X~N(μ,σ2),其中σ2未知,s2=,样本容量n,则参数μ的置信度为1-a的置信区间为().
设二维随机变量(X,Y)在区域D:0<x<1,|y|=x内服从均匀分布,求关于X的边缘概率密度函数及随机变量Z=2X+1的方差D(Z).
设S为球面:x2+y2+z2=R2,则下列同一组的两个积分均为零的是
对两批同类电子元件的电阻(Q)进行测试,各抽取6件,测得结果如下:第一批:0.1400.1380.1430.1410.1440.137;第二批:0.1350.1400.1420.1360.1380.140.设电
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
设f(x)的一个原函数是sinx,则|f’(x)sinxdx等于()
随机试题
新闻单位开展公共关系工作有两大优势,一是这些单位深受社会公众瞩目,二是这些单位【】
下列哪一项不属于大剂量静脉肾盂造影的禁忌证
下列药物中属于单环β-内酰胺类的是
建设项目中所需要的原辅材料、能源的供应、生活设施的依托条件以及施工条件等,称为()。
目前,商业银行推出的固定收益类理财产品的投资范围一般不包括()。
在我国实现共同富裕的目标体现着()。
简述自我效能感的基本含义及其提高措施。
以汪峰为代表的中国新摇滚音乐人,在21世纪的第一个十年迅速崛起。汗峰于2013年开始,在中国15个城市进行了巡演。根据最新数据,汪峰本人在2014年的音乐总票房更飙升至1.39亿元。在“2014年度演唱会票房排行榜”当中,汪峰以1.39亿元的票房位列第二,
有如下类模板定义:templateclassBigNumber{longn;public:BigNumber(Ti):n(i){}BigNumberoperator+(BigNumberb
"GeothermalEnergy"GeothermalenergyisnaturalheatfromtheinterioroftheEarththatisconvertedtoheatbuildingsand
最新回复
(
0
)