首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
从抛物线y=x2—1上的任意一点P(t,t2—1)引抛物线y=x2的两条切线. 证明该两条切线与抛物线y=x2所围面积为常数.
从抛物线y=x2—1上的任意一点P(t,t2—1)引抛物线y=x2的两条切线. 证明该两条切线与抛物线y=x2所围面积为常数.
admin
2019-01-29
69
问题
从抛物线y=x
2
—1上的任意一点P(t,t
2
—1)引抛物线y=x
2
的两条切线.
证明该两条切线与抛物线y=x
2
所围面积为常数.
选项
答案
这两条切线与抛物线y=x
2
所围图形的面积为 S(t)=∫
1
t
[x
2
—(2x
1
x—x
1
2
)]dx+∫
t
x
2
[x
2
—(2x
2
x—x
2
2
)]dx, 下证S(t)为常数. 方法: 求出S′(t). S′(t)=(t—x
1
)
2
—(t—x
2
)
2
[*]1
2
—(—1)
2
=0, →S(t)为常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/suj4777K
0
考研数学二
相关试题推荐
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0)上的最大值与最小值.
设讨论它们在点(0,0)处的①偏导数的存在性;②函数的连续性;③方向导数的存在性;④函数的可微性.
函数f(x,y,z)=一2x2在x2一y2一2z2=2条件下的极大值是___________.
证明:当x>0时,有.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,α2,…,αs,β中任意5个向量线性无关.
设向量组α2,α3,α4线性无关,则下列向量组中,线性无关的是()
设A是n阶矩阵,λ是A的r重特征根,A的对应于λ的线性无关的特征向量是k个,则k=____________。
计算定积分。
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1=
随机试题
(2010年10月)里格斯认为,在现代工业社会中,成为各种利益和要求的汇聚点和表达者的是_________。
下列不可以使合同发生无效的是()。
石方开挖使用的爆破方法中大多采用集中药包的是()。
在索洛模型中,技术进步是内生变量。()
下列不属于执行理财规划方案原则的是()。
重庆火锅的原料主要有下列的()。
截至2012年年底,我国全年新增网民5090万人(其中农村新增1960万人),互联网普及率为42.1%,较2011年年底提升3.8个百分点,网民中使用手机上网的用户占比由上年年底的69.3%提升至74.5%。微博用户同比增加5873万人,网民中微博用户的比
现代社会的种种特征对教育系统具有决定作用。()
设(X1,X2,…,X3)(n≥2)为标准正态总体,X的简单随机样本,则().
年画(NewYearPicture)是中国特有的一种绘画体裁。贴年画的习俗源于在房子的大门上贴门神(DoorGods)的传统。传统年画以精美的木刻(blockprint)和鲜艳的色彩闻名。主题主要是花鸟、可爱的婴儿、神话传说与历史故事等,表达人们祈望
最新回复
(
0
)