首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设实二次型f(x1,x2,x3)=(x1一x2+x3)2+(x2+x3)2+(x1+ax3)2,其中a是参数。 (I)求f(x1,x2,x3)=0的解; (Ⅱ)求f(x1,x2,x3)的规范形.
设实二次型f(x1,x2,x3)=(x1一x2+x3)2+(x2+x3)2+(x1+ax3)2,其中a是参数。 (I)求f(x1,x2,x3)=0的解; (Ⅱ)求f(x1,x2,x3)的规范形.
admin
2018-03-26
114
问题
设实二次型f(x
1
,x
2
,x
3
)=(x
1
一x
2
+x
3
)
2
+(x
2
+x
3
)
2
+(x
1
+ax
3
)
2
,其中a是参数。
(I)求f(x
1
,x
2
,x
3
)=0的解;
(Ⅱ)求f(x
1
,x
2
,x
3
)的规范形.
选项
答案
(I)由f(x
1
,x
2
,x
3
)=0得 [*] 当a≠2时,方程组有唯一解:x
1
=x
2
=x
3
=0. 当a=2时,方程组有无穷解:令x
1
=1,可得解[*].k∈R. (Ⅱ)当a≠2时,做非退化的线性变换[*] 此时f(x
1
,x
2
,x
3
)的规范形为f=y
1
2
+y
2
2
+y
3
2
. 当a=2时,做非退化的线性变换[*] 则 f(x
1
,x
2
,x
3
)=y
1
2
+y
2
2
+(y
1
+y
2
)
2
=2y
1
2
+2y
2
2
+2y
1
y
2
[*] 则f(x
1
,x
2
,x
3
)的规范形为f=z
1
2
+z
2
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/swX4777K
0
考研数学三
相关试题推荐
为了实现利润最大化,厂商需要对某商品确定其定价模型.设Q为该商品的需求量,P为价格,MC为边际成本.η为需求弹性(η>0).证明定价模型为
求幂级数的收敛域及和函数.
设向量组(Ⅰ):α1,α2,…,αr线性无关,且(Ⅰ)可由(Ⅱ):β1,β2,…,βs线性表示.证明:在(Ⅱ)中至少存在一个向量βj,使得向量组βj,α2,…,αr线性无关.
计算积分其中D是由直线y=一x及曲线所围成.
设有微分方程y’一2y=φ(x).其中,试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0
设偶函数f(x)在x=0的邻域内二阶连续可导,且f(0)=1,(0)=4.证明:绝对收敛.
设a=(1,1,一1)T是A=的一个特征向量.(Ⅰ)确定参数a,b的值及特征向量a所对应的特征值;(Ⅱ)问A是否可以对角化?说明理由.
设f(x)为[一a,a]上的连续的偶函数且f(x)>0,令F(x)=|x—f|f(t)dt.(Ⅰ)证明:F’(x)单调增加.(Ⅱ)当x取何值时,F(x)取最小值?(Ⅲ)当F(x6)的最小值为f(a)一a2一1时,求函数f(x).
设X1,X2,…,Xn是来自总体X~N(μ,σ2)的简单随机样本,其中μ是已知常数,σ2是未知参数.求参数σ2的最大似然估计量;
设f(x)在[a,b]上连续且严格单调增加.证明:(a+b)∫abf(x)dx<2∫abxf(x)dx.
随机试题
以下_______不是促销的基本目标。
OneofmyfondestChristmasmemorieswasalsooneofourfamily’sbleakest(最令人沮丧的).Wewerejustlittlekids,andonChristma
为预防麻疹可
患者,男,18岁,感冒后鼻衄,鼻腔干燥,口干,咳嗽少痰,低热,舌质红,苔薄黄,脉数,治法应
“救人闯红灯”是否应受罚?谈谈你的观点。
诗歌的翻译者必须实现字与字的对译,这在任何语言中都是不存在的,正如钢琴的旋律不可能发生在小提琴的演奏中一样。当然,小提琴可以演奏与钢琴同样的作品,但是,只有小提琴演奏者按着小提琴固有的、内在的风格演奏,才可以完美地表现原作的精神。以下哪个选项表明了作者的论
Withineconomictheory,thereareinanycasequitedifferentassumptionsaboutindividualbehaviour.Someneoclassicalmodelsa
在OSI参考模型中指出同一个系统相邻两层实体间交互是通过()进行的。
Manyinstructorsbelievethataninformal,relaxedclassroomenvironmentis【1】tolearningandinnovation.Itisnotuncommon
ACompany’sBattletoShowItWasaVictimofAbusiveShort-sellingA)Shortsellersbetagainstcompaniesbyborrowingtheirs
最新回复
(
0
)