首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y(x)是区间(0,3/2)内的可导函数,且y(1)=0,点P是曲线L:y=y(x)上的任意一点,L在点P处的切线与y轴相交于点(0,YP),法线与X轴相交于点(XP,0).若XP=YP,求L上点的坐标(x,y)满足的方程.
设y(x)是区间(0,3/2)内的可导函数,且y(1)=0,点P是曲线L:y=y(x)上的任意一点,L在点P处的切线与y轴相交于点(0,YP),法线与X轴相交于点(XP,0).若XP=YP,求L上点的坐标(x,y)满足的方程.
admin
2022-09-22
61
问题
设y(x)是区间(0,3/2)内的可导函数,且y(1)=0,点P是曲线L:y=y(x)上的任意一点,L在点P处的切线与y轴相交于点(0,Y
P
),法线与X轴相交于点(X
P
,0).若X
P
=Y
P
,求L上点的坐标(x,y)满足的方程.
选项
答案
点P(x,y)处的切线方程为Y-y=y’(X-x).令X=0,得Y
P
=y-y’x. 点P(x,y)处的法线方程为Y-y=-[*](X-x).令Y=0,得X
P
=x+yy’. 由于X
P
=Y
P
,可得y-xy’=x+yy’,即[*] 令y/x=u,则y=ux,[*]可转变为 (u+1)(u+x[*])=u-1. 上述方程为可分离变量的微分方程,分离变量可得[*] 两边分别积分得arctan u+[*]ln(1+u
2
)=-ln|x|+C,即arctan[*]ln(x
2
+y
2
)=C. 又y(1)=0,可得C=0.因此直线L上点的坐标(x,y)在区间(0,3/2)上满足的方程为 2arctan[*]+ln(x
2
+y
2
)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/tDf4777K
0
考研数学二
相关试题推荐
设I1=(χ4+y4)dσ,I2=(χ4+y4)dσ,I3=2χ2y2dσ则这三个积分的大小顺序是________<________<________.
微分方程ydx+(x一3y2)dy=0满足条件y|x=1=1的解为___________.
=_______
若齐次线性方程组存在非零解,则a=______.
设线性方程组有解,则方程组右端
由方程所确定的函数z=z(x,y)在点(1,0,一1)处的全微分dz=______.
求函数z=χy(4-χ-y)在χ=1,y=0,χ+y=6所围闭区域D上的最大值_______与最小值_______.
(Ⅰ)下列可表示由双纽线(x2+y2)2=x2-y2围成平面区域的面积的是________.(Ⅱ)由曲线x=a(t-sint),y=a(1-cost)(0≤t≤2π)(摆线)及x轴围成平面图形的面积S=________.
由曲线χ=a(t-sint),y=a(1-cost)(0≤t≤2π)(摆线)及χ轴围成平面图形的面积5=_______.
设曲线的参数方程为则对应于的曲线段的弧长s=__________.
随机试题
何谓催化剂的热稳定性?
理论界用价格水平的持续下降来定义通货紧缩几乎已经达成共识,对“持续”的标准持有的看法包括()
Teachersaresomeofthemostimportantprofessionalsintheworld.Theyareresponsible【C1】______preparingfuturegenerations
下述可用缩宫素的指征是
下列关于GIS开发模式的说法中,错误的是()。
施工作业进度计划是根据()施工进度计划来编制的。
下列关于非结算会员期货交易违约责任承担的表述,错误的是()。
下列有关普通合伙企业及其合伙人债务清偿的表述中,符合《合伙企业法》规定的有()。
党政机关的行文关系有()。
Peopleofdiversebackgroundsnowflytodistantplacesforpleasure,businessoreducation.
最新回复
(
0
)