首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求微分方程2y"+y’一y=(4—6x)e-x。满足条件y(0)=0,y’(0)=0的特解y=y(x),并求y=y(x)的单调区间与极值.
求微分方程2y"+y’一y=(4—6x)e-x。满足条件y(0)=0,y’(0)=0的特解y=y(x),并求y=y(x)的单调区间与极值.
admin
2020-10-21
38
问题
求微分方程2y"+y’一y=(4—6x)e
-x
。满足条件y(0)=0,y’(0)=0的特解y=y(x),并求y=y(x)的单调区间与极值.
选项
答案
(1)求齐次线性微分方程2y"+y’一y=0的通解. 齐次微分方程2y"+y’一y=0的特征方程为2r
2
+r—1=0,特征根为r
1
=一1,r
2
=[*], 故齐次线性微分方程的通解为 [*] (2)求非齐次线性微分方程2y"+y’一y=(4—6x)e
-x
的一个特解. 由于λ=一1是特征单根,故设其特解为y
*
=x(Ax+B)e
-x
,则 (y
*
)’=(2Ax+B)e
-x
一(Ax
2
+Bx)e
-x
. (y
*
)"=2Ae
-x
一2(2Ax+B)e
-x
+(Ax
2
+Bx)e
-x
. 将它们代入方程2y"+y’一y=(4—6x)e
-x
,得 —6Ax+(4A一3B)=一6x+4, 比较等式两边x同次幂的系数,得 [*] 所以y
*
=x
2
e
-x
. (3)非齐次线性微分方程2y"+y’一y=(4—6x)e
-x
的通解为 [*] (4)求微分方程2y"+y’—y=(4—6x)e
-x
满足条件y(0)=0,y’(0)=0的特解. [*] 由y(0)=0,y’(0)=0,得 [*] 故yY=x
2
e
-x
. 求y=x
2
e
-x
的单调区间与极值. y’=x(2一x)e
-x
,令y’=0,得驻点x
1
=0,x
2
=2,列表如下: [*] 故y=x
2
e
-x
的单调增区间为[0,2],单调减区间为(一∞,0],[2,+∞),极小值为y(0)=0, 极大值为y(2)=4e
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/MU84777K
0
考研数学二
相关试题推荐
若极限,则函数f(x)在x=a处
设,则A与B().
已知α=(1,一2,3)T是矩阵的特征向量,则()
设f(x)二阶可导,且f(0)=0,令g(x)=求g’(x)并讨论函数g’(x)的连续性。
设有解。求常数a,b
设L:(x≥0,y≥0],过点L上一点作切线,求切线与曲线所围成面积的最小值。
设函数f(x)在(-∞,+∞)上连续,其导函数的图形如右图所示,则f(x)有().
已知y*(x)=xe—x+e—2x,y*(x)=xe—x+xe—2x,y*(x)=xe—x+e—2x+xe—2x是某二阶线性常系数微分方程y"+py’+qy=f(x)的三个特解.(Ⅰ)求这个方程和它的通解;(Ⅱ)设y=y(x)是该方程满足y(0)=0,
设实二次型f(x1,x2,x3)=(x1一x2+x3)2+(x2+x3)2+(x1+ax3)2,其中a是参数•(I)求f(x1,x2,x3)=0的解;(Ⅱ)求f(x1,x2,x3)的规范形.
设a>0,f(χ)在(-∞,+∞)上有连续导数,求极限∫-aaf(t+a)-f(t-a)]dt.
随机试题
为保证门阀世族的特权,晋武帝咸宁二年(276年)所新创立的学校是()
心肌处于最适初长度时,肌小节的长度是()
患者,女,42岁。因关节肿痛伴僵硬多年,诊断为类风湿关节炎。其发病的相关因素是
预后最差的肺癌是
工程建设国家标准的制定程序主要包括以下()阶段。
某房地产开发商在决定开发区位、土地利用方式和规划设计方向时遇到了较大的难度,因为牵涉的金额巨大,需要依据正确、有效的资料来作出决定,所以该房地产开发商决定对市场进行调研。若要使投资决策更加科学、理性,则可选下列()。
()模式风险抵押金是基础年薪的50%。
财务杠杆是指在融资结构中对债务资本的利用。()
下列选项中,构成抢劫罪的有()
定义学生选修课程的关系模式:SC(S#,Sn,C#,Cn,G)(其属性分别为学号、姓名、课程号、课程名、成绩)。则对主属性部分依赖的是
最新回复
(
0
)