首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求微分方程2y"+y’一y=(4—6x)e-x。满足条件y(0)=0,y’(0)=0的特解y=y(x),并求y=y(x)的单调区间与极值.
求微分方程2y"+y’一y=(4—6x)e-x。满足条件y(0)=0,y’(0)=0的特解y=y(x),并求y=y(x)的单调区间与极值.
admin
2020-10-21
61
问题
求微分方程2y"+y’一y=(4—6x)e
-x
。满足条件y(0)=0,y’(0)=0的特解y=y(x),并求y=y(x)的单调区间与极值.
选项
答案
(1)求齐次线性微分方程2y"+y’一y=0的通解. 齐次微分方程2y"+y’一y=0的特征方程为2r
2
+r—1=0,特征根为r
1
=一1,r
2
=[*], 故齐次线性微分方程的通解为 [*] (2)求非齐次线性微分方程2y"+y’一y=(4—6x)e
-x
的一个特解. 由于λ=一1是特征单根,故设其特解为y
*
=x(Ax+B)e
-x
,则 (y
*
)’=(2Ax+B)e
-x
一(Ax
2
+Bx)e
-x
. (y
*
)"=2Ae
-x
一2(2Ax+B)e
-x
+(Ax
2
+Bx)e
-x
. 将它们代入方程2y"+y’一y=(4—6x)e
-x
,得 —6Ax+(4A一3B)=一6x+4, 比较等式两边x同次幂的系数,得 [*] 所以y
*
=x
2
e
-x
. (3)非齐次线性微分方程2y"+y’一y=(4—6x)e
-x
的通解为 [*] (4)求微分方程2y"+y’—y=(4—6x)e
-x
满足条件y(0)=0,y’(0)=0的特解. [*] 由y(0)=0,y’(0)=0,得 [*] 故yY=x
2
e
-x
. 求y=x
2
e
-x
的单调区间与极值. y’=x(2一x)e
-x
,令y’=0,得驻点x
1
=0,x
2
=2,列表如下: [*] 故y=x
2
e
-x
的单调增区间为[0,2],单调减区间为(一∞,0],[2,+∞),极小值为y(0)=0, 极大值为y(2)=4e
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/MU84777K
0
考研数学二
相关试题推荐
设α,β为四维非零列向量,且α⊥β,令A=αβT,则A的线性无关特征向量个数为()
累次积分,(rcosθ.rsinθ)rdr可写成
当a,b为何值时,β不可由a1,a2,a3线性表示。
设函数f(t)在(0,+∞)内具有二阶连续导数,函数z=,若f(1)=0,f’(1)=1,求f(x).
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得abeη-ξ=η2[f(η)-f’(η)].
设平面图形A由x2+y2≤2x及y≥x所确定,则A绕直线x=2旋转一周所得旋转体的体积公式为()。
设曲线y=y(x)过(0,0)点,M是曲线上任意一点,MP是法线段,P点在x轴上,已知MP的中点在抛物线2y2=x上,求此曲线的方程.
过曲线上的一点A作切线,使该切线与曲线及x轴所围成的平面区域的面积为3/4,所围区域绕x轴旋转一周而成的体积为___。
设直线y=ax+b为曲线y=ln(x+2)的切线,若y=ax+b,x=0,x=4及曲线y=ln(x+2)围成的图形面积最小,求a,b的值。
设抛物线y=x2与它的两条相互垂直的切线所围成的平面图形的面积为S,其中一条切线与抛物线相切于点A(a,a2)(a>0).当a取何值时,面积S(a)最小?
随机试题
浓色啤酒的色度在()。
在中碳钢工件上,攻M10×1.5的内螺纹,求攻螺纹底孔的直径。
胫骨平台及腓骨上端骨折,出现足背伸、外翻无力,小腿外侧感觉消失。提示下列哪类神经受损
由于贮存不当,盐酸肾上腺素注射液受阳光照射而出现颜色变深的现象是由于发生了
比对结果的评价方法通常用比较各实验室的_________。
随沥青含量增加,沥青混合料试件密度将()。
根据个人所得税法的有关规定,下列说法正确的是()。
在CreditMonitor中,股东初始股权投资被视作期权的()。
设X~U(0,2),Y=X2,求Y的概率密度函数.
SharksSharksareamazingfishthathavebeenaroundsincelongbeforethedinosaursexisted.Theyliveinwatersallovert
最新回复
(
0
)