首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量aK(2≤k≤m),使ak能由a1,a2,…,ak-1线性表示。
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量aK(2≤k≤m),使ak能由a1,a2,…,ak-1线性表示。
admin
2018-02-07
71
问题
设向量组a
1
,a
2
,…,a
m
线性相关,且a
1
≠0,证明存在某个向量a
K
(2≤k≤m),使a
k
能由a
1
,a
2
,…,a
k-1
线性表示。
选项
答案
因为向量组a
1
,a
2
,…,a
m
线性相关,由定义知,存在不全为零的数λ
1
,λ
2
,…,λ
m
,使 λ
1
a
1
+λ
2
a
2
+…+λ
m
a
m
=0。 因λ
1
,λ
2
…,λ
m
不全为零,所以必存在k,使得λ
k
≠0,且λ
k+1
=…=λ
m
=0。 当k=1时,代入上式有λ
1
a
1
=0。又因为a
1
≠0,所以λ
1
=0,与假设矛盾,故k≠1。 当λ
k
≠0且k≥2时,有 a
k
=[*]a
k-1
,k≠1, 因此向量a
k
能由a
1
,a
2
,…,a
k-1
线性表示。
解析
转载请注明原文地址:https://kaotiyun.com/show/tHk4777K
0
考研数学二
相关试题推荐
[*]
下列条件中,当△x→0时,使f(x)在点x=x。处不可导的条件是[].
证明:当x≥5时,2x>x2.
函数yx=A2x+8是下面某一差分方程的通解,这个方程是[].
求下列各微分方程的通解(1)2y〞+yˊ-y=2ex;(2)y〞+a2y=ex;(3)2y〞+5yˊ=5x2-2x-1;(4)y〞+3yˊ+2y=3xe-x;(5)y〞-2yˊ+5y=exsin2x;(6)y〞-6yˊ+9y=
不等式的解集(用区间表示)为[].
在区问(-∞,+∞)内,方程|x|1/4+|x|1/2-cosx=0
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
随机试题
志乎古,必遗乎今。遗:
肾小管完成重吸收功能的部位主要在()
什么是安全、危险、事故、风险?它们之间有什么关系?
按设备组成要素,电信系统可分为()
重新计量其他长期职工福利净负债或净资产所产生的变动计入其他综合收益。()
民法法系的发展基础是()。
广告证明是表明广告客户的主体资格是否合法和广告内容是否真实、合法的证明文件、证件和资料。根据以上定义,可作为广告证明的一项是()。
解决系统“做什么”和“怎么做”问题的分别是结构化方法的哪两个阶段的任务
有三个关系R、S和T如下:则由关系R和关系S得到关系T的操作是()。
AmericanpubliceducationhaschangednumbersofAmericanparentsandteachersareinrecentyears.Onechangeisthatincreasin
最新回复
(
0
)