首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设{xn}是数列,则下列命题中不正确的是( ).
设{xn}是数列,则下列命题中不正确的是( ).
admin
2019-08-21
37
问题
设{x
n
}是数列,则下列命题中不正确的是( ).
选项
A、
B、
C、
D、
答案
D
解析
可通过数列极限的定义证明(A)、(B)、(C)正确,也可以通过列举反列说明(D)错误.
解
,即对于
,当n>N时,恒有|x
n
-a|<ε成立,对于{x
n
}的任意子列
恒成立,故由极限定义可知
,则可知选项(A)、(C)正确.
对于(B),证明如下:由
,可得对于
时,恒有|x
2n
-a|<ε成立,当n>N
2
时,恒有|x
2n+1
-a|<ε成立.取N=2max{N
1
,N
2
},则当n>N时,恒有|x
n
-a|<ε成立,即
,故选项(B)正确.
选项(D)显然错误.可举反例如下:取
易知
不存在.
故应选(D).
转载请注明原文地址:https://kaotiyun.com/show/tKN4777K
0
考研数学二
相关试题推荐
函数则极限()
设z=esinxy,则dz=____________.
设f(x)在[0,+∞)内二阶可导,f(0)=-2,f’(0)=1,f"(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A2;
已知A=可对角化,求可逆矩阵P及对角矩阵∧,使P-1AP=A.
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
以下四个命题中,正确的是
设有微分方程y’-2y=φ(x),其中φ(x)=,在(-∞,+∞)求连续函数y(x),使其在(-∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
数列1,,…的最大项为________.
随机试题
清人庄仲方在《金文雅序》中所说的“借才异代”是指【】
维持机体稳态的重要调节过程是
无肝脏首过效应生物利用度可达100%的是
某肉鸡场35日龄鸡发病,病鸡表现精神沉郁、羽毛松乱,死亡病鸡的肉眼病变主要有纤维素性心包炎、纤维素性肝周炎和纤维素性气囊炎。使用抗生素治疗后效果良好。该病最可能是
【案例四】背景材料:某公司中标某工程,根据《建设工程施工合同(示范文本)》(GF一1999—0201)与建设单位签订总承包施工合同。按公司成本管理规定,首先进行该项目成本预测(其中:人工费287.4万元,材料费504.4万元,机械使用费
下列各项中,符合城市维护建设税规定的有()。
张老师,女,45岁。喜欢吃各种甜食和巧克力、炸薯条等热量高的食品。平时基本上没有户外运动的习惯。体格测量结果为:身高165cm,体重80kg,腰围90cm,臀围110cm。 请根据上述案例回答以下问题。张老师的BMI是多少?按标准是否正常?
警惕汞污染1953年,日本水俣湾附近发现了一种“怪病”,称为“水俣病”。这种病症最初出现在猫身上,病猫步态不稳,抽搐、麻痹,甚至跳海而死。不久,陆续发现了患这种病症的人。患者步履蹒跚,手足麻痹乃至变形,神经错乱甚至死亡。后来发现,这不是传染病,而
Thetragedycouldhavebeen______ifthecrewhadfollowedsafetyprocedures.
ScoresofuniversityhallsofresidencesandlecturetheatresintheUKwerejudged"atseriousriskofmajorfailureorbreakdo
最新回复
(
0
)