首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B都是n阶矩阵,E-AB可逆.证明E-BA也可逆,并且(E-BA)-1=E+B(E-AB)-1A.
设A,B都是n阶矩阵,E-AB可逆.证明E-BA也可逆,并且(E-BA)-1=E+B(E-AB)-1A.
admin
2018-06-27
61
问题
设A,B都是n阶矩阵,E-AB可逆.证明E-BA也可逆,并且(E-BA)
-1
=E+B(E-AB)
-1
A.
选项
答案
本题看似要证明两个结论,实际上只要证明等式(E-BA)[E+b(E-AB)
T
A]=E成立,两个结论就都得到了! (E-BA)[E+B(E-AB)
-1
A]-(E-BA)+(E-BA)B(E-AB)
-1
A =(E-BA)+(B-BAB)(E-AB)
-1
A =(E-BA)+B(E-AB)(E-AB)
-1
A =E-BA+bA=E.
解析
转载请注明原文地址:https://kaotiyun.com/show/tik4777K
0
考研数学二
相关试题推荐
设矩阵,问当k为何值时,存在可逆矩阵P,使得P-1AP为对角矩阵?并求出P和相应的对角矩阵.
设3阶矩阵A满足Aαi=iαi(i=1,2,3),其中列向量α1=(1,2,2)T,α2=(2,-2,1)T,α3=(-2,-1,2)T,试求矩阵A.
对于线性方程组讨论λ为何值时,方程组无解、有唯一解和有无穷多组解.在方程组有无穷多组解时,试用其导出组的基础解系表示全部解.
设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b).证明:在(a,b)内至少存在一点ξ,使得f’(ξ)>0.
已知曲线在直角坐标系中由参数方程给出:证明该方程确定连续函数y=y(x),x∈[0,+∞);
设n阶实对称矩阵A满足A2=E,且秩r(A+E)=k
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求a的值;
随机试题
叶酸类似物可以干扰
关于淋病的诊断不正确的是
对于建筑单桩基础,一般需在纵横向设置连系梁,设置连系梁的主要目的是()。
下列账户属于负债类账户的是()。
西城汽车配件销售公司于2020年10月28日销售一批汽车配件给江南汽车修理厂,货物于当日发出,并开具增值税专用发票给江南汽车修理厂。因户名开具错误,江南汽车修理厂拒收这张增值税专用发票,并于2020年11月7日将原开具的增值税专用发票的发票联及抵扣联还给西
管理信息是一个由( )和计算机等组成的能进行信息收集、传递、存储、加工维护和使用的系统。系统评审、转换阶段,将并发中的新系统与现行系统进行平稳转换,对系统性能进行评审,写出( )。
张某、李某为甲有限责任公司的股东,分别持股65%与35%,张某为公司董事长。为谋求更大的市场空间,张某提出吸收合并乙公司的发展战略。根据公司法律制度的规定,下列选项中,正确的有()。
在下列关系中,可以认定与客户为关联实体的是()。
Martinhascreatedenoughmemorable______tomakeiteasytoforgivehislows.
Ifyou【D1】______smoothskinthatglowswithyouth,thechancesarethatatsomepointyouwillhaveheardtheexhortationtodri
最新回复
(
0
)