首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又a1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵. (Ⅰ)验证a1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B.
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又a1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵. (Ⅰ)验证a1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B.
admin
2013-09-15
56
问题
设3阶对称矩阵A的特征向量值λ
1
=1,λ
2
=2,λ
3
=-2,又a
1
=(1,-1,1)
T
是A的属于λ
1
的一个特征向量.记B=A
5
-4A
3
+E,其中E为3阶单位矩阵.
(Ⅰ)验证a
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
(Ⅱ)求矩阵B.
选项
答案
(I)容易验证A
n
a
1
=λ
1
n
a
1
(n=1,2,3,…),于是 Ba
1
=(A
5
+4A
3
+B)a
1
=(λ
1
5
-4λ
1
3
+1)a
1
=-2a
1
. 于是-2是矩阵B的特征值,k
1
a
1
是B属于特征值-2的全部特征向量(k
1
∈R,非零). 同理可求得矩阵B的另外两个特征值1、1. 因为A为实对称矩阵,则B也为实对称矩阵,于是矩阵B属于不同特征值的特征向量正交.设B的属于1的特征向量为(x
1
,x
2
,x
3
)
T
,则有方程x
1
-x
2
+x
3
=0. 于是B的属于1的全部特征向量为β=k
2
a
2
+k
3
a
3
,其中a
2
=(-1,0,1)
T
,a
3
=(1,1,0)
T
,k
2
,k
3
∈R。不全为零.(Ⅱ)令矩阵P=(a
1
,a
2
,a
3
)=[*],则P
-1
BP=diag(-2,1,1),于是B=P.diag(-2,1,1)P
-1
=[*]diag(-2,1,1)[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/tn34777K
0
考研数学二
相关试题推荐
设A,B为两个随机事件,且0
(2000年)在电炉上安装了4个温控器,其显示温度的误差是随机的。在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等
设A,B是可逆矩阵,且A与B相似,则下列结论错误的是__________.
(02年)(1)验证函数y(χ)=1++…(-∞<χ<+∞)满足微分方程y〞+y′+y=eχ(2)利用(1)的结果求幂级数的和函数.
设(Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数。试问:当a1,a2,…,an满足条件时,二次型f(x1,x2,
(2003年)已知曲线y=x3一3a2x+b与x轴相切,则b2可以通过a表示为b2=________。
(01年)已知抛物线y=pχ2+qχ(其中P<0,q>0)在第一象限内与直线χ+y=5相切,且抛物线与χ轴所围成的平面图形的面积为S.(1)问P和q为何值时,S达到最大值?(2)求出此最大值.
(1996年)累次积分可以写成()
设f(x)连续,且f(1)=0,f’(1)=2,求极限。
随机试题
不属于集成稳压器参数的是()。
按决策主体划分,决策可分为___________和个人决策。
下列哪种疾病中免疫球蛋白的含量不下降
A.A期B.B期C.C1期D.C2期E.D期大肠癌癌肿已穿透肠壁但无淋巴结转移,在Dukes分期中属于()。
药品生产企业产品生产管理文件包括()
概括起来看,社区卫生服务机构的服务内容为()和基本医疗服务。
对于出生国籍,我国采用()。
简论中国戏曲艺术的民间性特点
有三个关系R、S和T如下:则由关系R和S得到关系T的操作是( )。
Whichofthefollowingstatementsistrueaccordingtothetext?Whatistheauthor’sattitudetowardsthereconstructionofTh
最新回复
(
0
)