首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又a1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵. (Ⅰ)验证a1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B.
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又a1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵. (Ⅰ)验证a1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B.
admin
2013-09-15
77
问题
设3阶对称矩阵A的特征向量值λ
1
=1,λ
2
=2,λ
3
=-2,又a
1
=(1,-1,1)
T
是A的属于λ
1
的一个特征向量.记B=A
5
-4A
3
+E,其中E为3阶单位矩阵.
(Ⅰ)验证a
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
(Ⅱ)求矩阵B.
选项
答案
(I)容易验证A
n
a
1
=λ
1
n
a
1
(n=1,2,3,…),于是 Ba
1
=(A
5
+4A
3
+B)a
1
=(λ
1
5
-4λ
1
3
+1)a
1
=-2a
1
. 于是-2是矩阵B的特征值,k
1
a
1
是B属于特征值-2的全部特征向量(k
1
∈R,非零). 同理可求得矩阵B的另外两个特征值1、1. 因为A为实对称矩阵,则B也为实对称矩阵,于是矩阵B属于不同特征值的特征向量正交.设B的属于1的特征向量为(x
1
,x
2
,x
3
)
T
,则有方程x
1
-x
2
+x
3
=0. 于是B的属于1的全部特征向量为β=k
2
a
2
+k
3
a
3
,其中a
2
=(-1,0,1)
T
,a
3
=(1,1,0)
T
,k
2
,k
3
∈R。不全为零.(Ⅱ)令矩阵P=(a
1
,a
2
,a
3
)=[*],则P
-1
BP=diag(-2,1,1),于是B=P.diag(-2,1,1)P
-1
=[*]diag(-2,1,1)[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/tn34777K
0
考研数学二
相关试题推荐
(98年)设函数f(χ)=,讨论函数f(χ)的间断点,其结论为【】
(2014年)设随机变量X与Y的概率分布相同,X的概率分布为P{X=0}=,P{X=1}=,且X与Y的相关系数ρXY=(Ⅰ)求(X,Y)的概率分布;(Ⅱ)求P{X+Y≤1}。
证明n阶矩阵相似。
(03年)设f(χ)=其导函数在χ=0处连续,则λ的取值范围是_______.
设函数f(x)在区间[0,2]上具有连续导数,f(0)=f(2)=0,M=,证明:存在
设(I)求|A|.(Ⅱ)已知线性方程组Ax=β有无穷多解,求实数。的值,并求Ax=β的通解.
(08年)如图,曲线段的方程为y=f(χ),函数f(χ)在区间[0,a]上有连续的导数,则定积分∫0aχf′(χ)dχ等于【】
(2008年)设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则()
(2007年)设函数f(x,y)连续,则二次积分等于()
(96年)设向量α1,α2,…,αt,是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,…,β+αt,线性无关.
随机试题
在行政处罚听证程序中,当事人要求听证的,应当在行政机关告知听证权利后3日内提出。()
妇女进入老年期后的生理特点不正确的是( )。
A.湿疹B.疖痈C.类风湿结节D.面部蝶形红斑E.指端及指甲周红斑类风湿关节炎较特异的皮肤表现是
可以准确计算相对危险度的指标是
中药饮片的法定质量标准是()
下列属于个人教育贷款的欺诈风险的是()。
下列哪项是关于资产组合模型监测商业银行组合风险的正确说法?()
历史上人类创建了数以千万计的园林,()堪称代表,被推崇为三大园林系统。
(2010年真题)1948年在香港成立的三联书店,由()等合并组成。
Evaluationofenergy-savingmethodsChryslerBuildingLocation:NewYork,NewYorkBuildingType:
最新回复
(
0
)