首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(95年)已知二次型f(χ1,χ2,χ3)=4χ22-3χ32+4χ1χ2-4χ1χ3+8χ2χ3. (1)写出二次型.厂的矩阵表达式; (2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
(95年)已知二次型f(χ1,χ2,χ3)=4χ22-3χ32+4χ1χ2-4χ1χ3+8χ2χ3. (1)写出二次型.厂的矩阵表达式; (2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
admin
2021-01-25
66
问题
(95年)已知二次型f(χ
1
,χ
2
,χ
3
)=4χ
2
2
-3χ
3
2
+4χ
1
χ
2
-4χ
1
χ
3
+8χ
2
χ
3
.
(1)写出二次型.厂的矩阵表达式;
(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
选项
答案
(1)f的矩阵表达式为 f(χ
1
,χ
2
,χ
3
)=(χ
1
,χ
2
,χ
3
)[*] (2)f的矩阵为 [*] 由A的特征方程 [*] 得A的全部特征值为λ
1
=1,λ
2
=6,λ
3
=-6.计算可得,对应的特征向量分别可取为 α
1
=(2,0,一1)
T
,α
2
=(1,5,2)
T
,α
3
=(1,-1,2)
T
对应的单位特征向量为 [*] 由此可得所求的正交矩阵为 P=[β
1
β
2
β
3
]=[*] 对二次型f作正交变换 [*] 则二次型f可化为如下标准形:f=y
1
2
+6y
2
2
-6y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/2ux4777K
0
考研数学三
相关试题推荐
设A、B均为三阶矩阵,E是三阶单位矩阵,已知AB=2A+3B,A=,则(B—2E)—1=________。
设A=,若矩阵X满足AX+2B=BA+2X,则X4=__________.
连续函数f(x)满足f(x)=3∫0xf(x-t)dt+2,则f(x)=______.
设3阶方阵A,B满足关系式A-1BA=6A+BA,且A=,则B=______.
设二次型f(x1,x2,x3)=5x12+ax22+3x32-2x1x2+6x1x3-6x2x3的矩阵合同于.(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
设总体X的概率分布为(0<θ<)(Ⅰ)试利用总体X的简单随机样本值3,1,3,0,3,1,2,3,求θ的矩估计值;(Ⅱ)设X1,X2,…,Xn是来自X(其未知参数θ为(Ⅰ)中确定的)的简单随机样本,当n充分大时,取值为2的样本个数N满足=Ф(x),求
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是()
(1998年)设某酒厂有一批新酿的好酒,如果现在(假定t=0)就售出,总收入为R0(元).如果窖藏起来,待来日按陈酒价格出售,t年末总收入为.假定银行的年利率为r,并以连续复利计息,试求窖藏多少年售出可使总收入的现值最大,并求r=0.06时的t值.
(1998年)设函数f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0.试证存在ξ,η∈(a,b),使得
随机试题
举例说明植物化学物的生物学作用。
男,45岁。双侧上睑下垂2周入院,伴双下肢无力,晨轻暮重,无呼吸及吞咽困难。手术恢复后,下一步的治疗采取
输精管开口于雄性尿道骨盆部的起始部背侧的圆形隆起称为()
患者,女,24岁。患腿痈l周,溃腐3天,脓腐稠厚且多,不易脱落。外用掺药应首选()
关于工程款担保制度的说法,错误的有()。
患者,女,38岁,患风湿性心脏病伴二尖瓣狭窄,突然出现偏瘫,失语。检查:神志清楚,脑脊液正常,心电图提示心房颤动。患者最可能出现的是()。
金沙遗址出土的象征着追求光明、团结奋进、和谐包容精神的“马踏飞燕”被国家文物局批准成为“中国义化遗产”标志。()
以下列举的属于1999年宪法修正案内容的有()
Youmusthavebeentroubledbywhentosay"Iloveyou"becauseitisoneofthegreatestpuzzlesinourlife.Whatifyou
A、Themachinehasn’tbeenrepairedyet.B、The.studentsforgettoreservetheirterminals.C、Thesupervisorwon’tobservethere
最新回复
(
0
)