首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,2,3,4)T,α2=(2,0,-1,1)T,α3=(6,0,0,5)T,则向量组的秩r(α1,α2,α3)=_______,极大线性无关组是_______.
已知α1=(1,2,3,4)T,α2=(2,0,-1,1)T,α3=(6,0,0,5)T,则向量组的秩r(α1,α2,α3)=_______,极大线性无关组是_______.
admin
2016-10-20
83
问题
已知α
1
=(1,2,3,4)
T
,α
2
=(2,0,-1,1)
T
,α
3
=(6,0,0,5)
T
,则向量组的秩r(α
1
,α
2
,α
3
)=_______,极大线性无关组是_______.
选项
答案
3;α
1
,α
2
,α
3
解析
(α
1
,α
2
,α
3
)=
线性无关,而知α
1
,α
2
,α
3
线性无关,故秩r(α
1
,α
2
,α
3
)=3,极大线性无关组:α
1
,α
2
,α
3
.
转载请注明原文地址:https://kaotiyun.com/show/tqT4777K
0
考研数学三
相关试题推荐
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:(1)|x-a|20与x≤20;(3)x>20与x20与x≤22;(5)“20件产品全是合格品”与“20件产品中恰有一件是废品”;(6)“20件产品全是合
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
证明[*]
由概率的公理化定义证明:(1)P()=1-P(A);(2)P(A-B)=P(A)-P(AB).特别地,若A⊃B,则P(A-B)=P(A)-P(B).且P(A)≥P(B);(3)0≤P(A)≤1;(4)P(A∪B)
设函数y=f(x)有三阶连续导数,其图形如图29所示,其中l1与l2分别是曲线在点(0,0)与(3,2)处的切线.试求积分
在求直线l与平面Ⅱ的交点时,可将l的参数方程x=xo+mt,y=yo+nt,z=zo+pt代入Ⅱ的方程Ax+By+Cz+D=0,求出相应的t值.试问什么条件下,t有唯一解、无穷多解或无解?并从几何上对所得结果加以说明.
用常数变易法求下列线性微分方程的通解:(1)y〞+y=secx,已知y1(x)=cosx是方程y〞+y=0的一个解;(2)(2x-1)y〞-(2x+1)yˊ+2y=0,已知y1(x)=ex是该方程的一个解;(3)x2y〞-2xyˊ+2y=2x3,已知
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x).其中a(x)是当x—0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
设齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均足Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③符Ax=0与Bx=0同解,则秩(A)
设实对称矩阵,求可逆矩阵P,使P-1AP为对角形矩阵,并计算行列式丨A-E丨的值.
随机试题
以下临床表现哪些符合神经根型颈椎病的特征
关于电子束CT的描述,错误的是
该患者可能的诊断是如果患者反复发作,中间期不清醒,进一步应采取哪些措施
A、气微腥,味微咸B、气微腥,味淡C、气腥,味微咸D、气特异而臭,刺激性强E、气清香,味苦而后微甜,入口有清凉感僵蚕的气味是
下列所作的各种关于公司的分类,哪一种是以公司的信用基础为标准的分类?
[2014年,第8题]下列说法中正确的是()。
下列全玻幕墙施工,错误的是()
在各类选拔性测验中,若不同测验分数可以互相补偿,则用来合成不同测验分数的最恰当方法是
AgingposesaseriouschallengetoOECD(OrganizationofEconomicCo-operationandDevelopment)countries,inparticular,howto
过程评审的目标是______。
最新回复
(
0
)