首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)为具有二阶连续偏导数的二次齐次函数,即对任何x,y,t下式成立 f(tx,ty)=t2f(x,y). (1)证明 (2)设D是由L:x2+y2=4正向一周所围成的闭区域,证明: ∮Lf(x,y)ds=div[grad f(x,y)]
设f(x,y)为具有二阶连续偏导数的二次齐次函数,即对任何x,y,t下式成立 f(tx,ty)=t2f(x,y). (1)证明 (2)设D是由L:x2+y2=4正向一周所围成的闭区域,证明: ∮Lf(x,y)ds=div[grad f(x,y)]
admin
2018-09-25
38
问题
设f(x,y)为具有二阶连续偏导数的二次齐次函数,即对任何x,y,t下式成立
f(tx,ty)=t
2
f(x,y).
(1)证明
(2)设D是由L:x
2
+y
2
=4正向一周所围成的闭区域,证明:
∮
L
f(x,y)ds=
div[grad f(x,y)]dσ.
选项
答案
(1)方程f(tx,ty)=t
2
f(x,y)两边对t求导得 xf
1
’(tx,ty)+yf
2
’(tx,ty)=2tf(x.y). 再对t求导得, x[xf
21
]](tx,ty)+yf
12
’’(tx,ty)]+y[xf
21
’’(tx,ty)+yf
22
’’(tx,ty)]=2f(x,y). 于是 tx[txf
11
’’(tx,ty)+ty
12
’’(tx,ty)]+ty[txf
21
’’(tx,ty)+tyf
22
’’(tx,ty)]=2t
2
f(x,y)=2f(tx,ty), 由此得x
2
f
xx
’’(x,y)+2xyf
xy
’’(x,y)+y
2
f
yy
’’(x,y)=2f(x,y),即结论成立. (2)由xf
1
’(tx,ty)+yf
2
’(tx,ty)=2tf(x,y)得 txf
1
’(tx,ty)+tyf
2
’(tx,ty)=2t
2
f(x,y), 即xf
x
’(x,y)+yf
y
’(x,y)=2f(x,y),又 [*] (其中n
0
为点(x,y)处的单位切向量).
解析
转载请注明原文地址:https://kaotiyun.com/show/tqg4777K
0
考研数学一
相关试题推荐
设u=f(x,y,z,t)关于各变量均有连续偏导数,而其中由方程组①确定z,t为y的函数,求
计算下列反常积分:(Ⅰ);(Ⅱ);(Ⅲ)dx;(Ⅳ)dx(a>0).
求I=xydxdy,D由曲线x2+y2=2x+2y-1所围成.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
求下列不定积分:(Ⅰ)dx;(Ⅱ)(a>0);(Ⅲ)∫x(1-dx.
证明函数f(x)=在(0,+∞)单调下降.
已知方程组总有解,则λ应满足__________.
过曲线y=x2(x≥0)上某点A作一切线,使之与曲线及x轴围成图形面积为,求:(Ⅰ)切点A的坐标:(Ⅱ)过切点A的切线方程;(Ⅲ)由上述图形绕x轴旋转的旋转体的体积.
设f(x)=(I)若f(x)处处连续,求a,b的值;(II)若a,b不是(I)中求出的值时f(x)有何间断点,并指出它的类型.
将下列函数在指定点展开成幂级数:f(x)=arcsinx,在x=0处;
随机试题
新民主主义的政治是()
驾驶人违反交通运输管理法规发生重大事故致人死亡的处3年以上有期徒刑。
估价时点原则要求房地产估价结果应是估价对象在()的价值。
根据《税收征收管理法》,税务登记内容发生变化,纳税人应当自办理工商变更登记之日()日内,向税务机关申报办理变更税务登记。
建在森林、郊野的古建筑周围应开辟一定宽度的防火隔离带,并在秋冬季节清除()m范围内的杂草、干枯树枝等可燃物。
材料一:据报道,某地政府为了达到招商引资的目的,设立了一个临时性的机构与投资者签订一个项目合同。合同签订后,事情突然起了变化,该临时机构也随之消失,与此同时,投资者还发现该项目用地属于“未经批准擅自占用土地”,其开发行为属于“违法行为”,遂将某地
运用试管香蕉技术来推广优良香蕉品种,这种技术属于()。
【《论十大关系》】浙江大学2001年中国现代史真题;山西大学2018年中国历史真题
材料1面对突如其来的新冠肺炎疫情,中国政府、中国人民不畏艰险,始终把人民生命安全和身体健康摆在第一位,按照坚定信心、同舟共济、科学防治、精准施策的总要求,坚持全民动员、联防联控、公开透明,打响了一场抗击疫情的人民战争经过艰苦努力,付出巨大牺牲。目
Peoplebornintheautumnlivelongerthanthoseborninthespring.Andtheyarelesslikelytofall【B1】______illwhentheyar
最新回复
(
0
)