首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
公务员
设f(x)是定义在区间(1,+∞)上的函数,其导函数为f'(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a). 已知函数g(x)具有性质
设f(x)是定义在区间(1,+∞)上的函数,其导函数为f'(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a). 已知函数g(x)具有性质
admin
2019-06-01
34
问题
设f(x)是定义在区间(1,+∞)上的函数,其导函数为f'(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x
2
-ax+1),则称函数f(x)具有性质P(a).
已知函数g(x)具有性质P(2),给定x
1
,x
2
∈(1,+∞),x
1
<x
2
,设m为实数,a=mx
1
+(1-m)x
2
,β=(1-m)x
1
+mx
2
,且α>1,β>1,若|g(α)-g(β)|<|g(x
1
)-g(x
2
)|,求m的取值范围.
选项
答案
由题设知,g(x)的导函数g'(x)=h(x)(x
2
-2x+1),其中函数h(x)>0对于任意的x∈(1,+∞)都成立,所以,当x>1时,g'(x)=h(x)(x-1)
2
>0,从而g(x)在区间(1,+∞)上单调递增. ①当m∈(0,1)时,有a=mx
1
+(1-m)x
2
>mx
1
+(1-m)x
1
=x
1
,a<mx
2
+(1-m)x
2
=x
2
,得α∈(x
1
,x
2
),同理可得β∈(x
1
,x
2
),所以由g(x)的单调性知g(α),g(β)∈(g(x
1
),g(x
2
)),从而有∣g(α)-g(β)∣<∣g(x
1
)-g(x
2
)∣,符合题设. ②当m≤0时,α=mx
1
+(1-m)x
2
≥mx
2
+(1-m)x
2
=x
2
,β=(1-m)x
1
+mx
2
≤(1-m)x
1
+mx
1
=x
1
,于是由α>1,β>1及g(x)的单调性知g(β)≤g(x
1
)<g(x
2
)≤g(α),所以∣g(α)-g(β)∣≥∣g(x
1
)-g(x
2
)∣,与题设不符. ③当m≥1时,同理可得α≤x
1
,β>x
2
,进而得∣g(α)-g(β)∣≥∣g(x
1
)-g(x
2
)∣,与题设不符. 因此,综合①、②、③得所求的m的取值范围为(0,1).
解析
转载请注明原文地址:https://kaotiyun.com/show/u0Fq777K
本试题收录于:
小学数学题库教师公开招聘分类
0
小学数学
教师公开招聘
相关试题推荐
针对空气污染越来越严重,PM2.5值不断爆表的情况,北京某学校倡导学生为保护人类赖以生存的环境做出自己的贡献,在校学生可以踊跃投稿,畅言自己的想法。请你根据以下要求,以“TheMoreContributiontoEnvironment,theMo
已知y是x的一次函数,下表列出了部分对应值,则m=______。
函数中自变量x的取值范围是______,若x=4,则y=______。
已知关于x的一元二次方程x2-m=2x有两个不相等的实数根,则m的取值范围是______,若m=3,则解方程得,x=______。
用配方法解方程:3x2-6x-4=0.
已知关于x的一元二次方程x2+kx-1=0.是否存在实数k,使得方程的两根分别为x1,x2,且满足x1+x2=x1.x2,若有,求出k的值;若没有,请说明理由.
已知点A(x1,y1)、B(x2,y2)在反比例函数的图象上,且x1<0<x2,则y1、y2和0的大小关系().
一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1、2、3则此球的表面积为______________。
哥德巴赫猜想虽经人们无数次验证是正确的,但是至今还没有人证明,所以只能称之为猜想.它反映了数学的()特点。
已知△ABC~△A’B’C’,AD为BC边上的高,A’D’为B’C’边上的高,证明:
随机试题
附有注册会计师出具审计报告的财务报告的可信度将大大提高,对财务分析的影响正确的有()。
A.直接致癌物B.促癌剂C.间接致癌物D.前致癌物E.近致癌物必须经过体内代谢活化才具有致癌作用的物质,称为
A.溢出性蛋白尿B.微量白蛋白尿C.非选择性白蛋白尿D.体位性蛋白尿E.渗出性蛋白尿多发性骨髓瘤的蛋白尿为
《药品生产许可证》的变更分为许可事项变更和登记事项变更。下列属于许可事项变更的是()
某人民检察院立案侦查该市工商局长利用职权报复陷害他人,侦查中发现犯罪已过追诉时效期限。人民检察院应当如何处理?
中央银行通过调节商业银行持有的()规模,来改变商业银行体系的贷款能力,控制整个经济的货币供给量。
社会主义法治理念的基本内涵包括()。
试述课题论证的基本内容。
Australianchildrenarevisitingsocialmediawebsitesatanincreasinglyyoungerage,anewsurveysuggests,withoneinfive"
IP地址块202.113.79.128/27、202.113.79.160/27和202.113.79.192/27经过聚合后可用的地址数为()。
最新回复
(
0
)