首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
公务员
设f(x)是定义在区间(1,+∞)上的函数,其导函数为f'(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a). 已知函数g(x)具有性质
设f(x)是定义在区间(1,+∞)上的函数,其导函数为f'(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a). 已知函数g(x)具有性质
admin
2019-06-01
20
问题
设f(x)是定义在区间(1,+∞)上的函数,其导函数为f'(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x
2
-ax+1),则称函数f(x)具有性质P(a).
已知函数g(x)具有性质P(2),给定x
1
,x
2
∈(1,+∞),x
1
<x
2
,设m为实数,a=mx
1
+(1-m)x
2
,β=(1-m)x
1
+mx
2
,且α>1,β>1,若|g(α)-g(β)|<|g(x
1
)-g(x
2
)|,求m的取值范围.
选项
答案
由题设知,g(x)的导函数g'(x)=h(x)(x
2
-2x+1),其中函数h(x)>0对于任意的x∈(1,+∞)都成立,所以,当x>1时,g'(x)=h(x)(x-1)
2
>0,从而g(x)在区间(1,+∞)上单调递增. ①当m∈(0,1)时,有a=mx
1
+(1-m)x
2
>mx
1
+(1-m)x
1
=x
1
,a<mx
2
+(1-m)x
2
=x
2
,得α∈(x
1
,x
2
),同理可得β∈(x
1
,x
2
),所以由g(x)的单调性知g(α),g(β)∈(g(x
1
),g(x
2
)),从而有∣g(α)-g(β)∣<∣g(x
1
)-g(x
2
)∣,符合题设. ②当m≤0时,α=mx
1
+(1-m)x
2
≥mx
2
+(1-m)x
2
=x
2
,β=(1-m)x
1
+mx
2
≤(1-m)x
1
+mx
1
=x
1
,于是由α>1,β>1及g(x)的单调性知g(β)≤g(x
1
)<g(x
2
)≤g(α),所以∣g(α)-g(β)∣≥∣g(x
1
)-g(x
2
)∣,与题设不符. ③当m≥1时,同理可得α≤x
1
,β>x
2
,进而得∣g(α)-g(β)∣≥∣g(x
1
)-g(x
2
)∣,与题设不符. 因此,综合①、②、③得所求的m的取值范围为(0,1).
解析
转载请注明原文地址:https://kaotiyun.com/show/u0Fq777K
本试题收录于:
小学数学题库教师公开招聘分类
0
小学数学
教师公开招聘
相关试题推荐
刘老师在教学中积极创设英语教学情境,营造民主、友好的学习氛围,建立平等的师生关系。这种做法符合《义务教育英语课程标准》(2011年版)中的______要求。
《圣经》在英语的发展过程中对英语影响深远。
美国耶鲁大学法学院华裔教授蔡美儿(AmyChua)的新书《虎妈战歌》(TheBattleHymnofaTigerMother)记录了她用严格的中式教育方法培养孩子的经历,引起了美国《时代》周刊等全球媒体关于东西方教育观念的讨论,其中的焦点
若代数式的值是常数2,则a的取值范围是()。
将一个平行四边形沿高剪开,可能得到()。
对任意整数A、B,规定A*B=2(A+B),则(2*3)*4=______.
下列图形中,对称轴只有一条的是().
等比数列{an}的前n项和为Sn,且S1,2S2,3S3成等差数列,则{an}的公比为_____________。
Sn为{an}前n项和,a1=3,Sn+Sn+1=3an+1,则Sn=
如图1,把正方形CGEF的对角线CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M。探究:线段MD、MF的关系,并加以证明。
随机试题
下列属于短期政府债券的是()。
东亚市场包括________、________、________、________、。
曾经担任美国克莱斯勒公司总经理的艾柯卡先生说过:“等到委员会讨论再射击,野鸡已经飞走了。”关于这句话,正确的理解是()
上前牙的髓腔最大的地方在
杭州市总体规划最终审批部门是()。
沉浸式蛇管换热器的优点有()。
1994年7月19日中国联通公司正式成立,获准经营通信业务,标志着()。
______theprojectintime,thestaffwereworkingatweekends.
士大夫恢复未艰苦土大而为土且太认为了
PeoplelivingonpartsofthesouthcoastofEnglandfaceaseriousproblem.In1993,theownersofalargehotelandofseveral
最新回复
(
0
)