首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A、B均为n/阶矩阵,且AB=A-B,A有n个互不相同的特征值λ1,λ2,…,λn,证明: (1)λi≠-1(i=1,2,…,n); (2)AB=BA; (3)A的特征向量都是B的特征向量; (4)B可相似对角化.
设A、B均为n/阶矩阵,且AB=A-B,A有n个互不相同的特征值λ1,λ2,…,λn,证明: (1)λi≠-1(i=1,2,…,n); (2)AB=BA; (3)A的特征向量都是B的特征向量; (4)B可相似对角化.
admin
2016-06-30
91
问题
设A、B均为n/阶矩阵,且AB=A-B,A有n个互不相同的特征值λ
1
,λ
2
,…,λ
n
,证明:
(1)λ
i
≠-1(i=1,2,…,n);
(2)AB=BA;
(3)A的特征向量都是B的特征向量;
(4)B可相似对角化.
选项
答案
(1)即证|-E-A|≠0,或|E+A|≠0或E+A可逆,这可由AB=A-B[*](A+E)(E-B)=E,[*]A+E可逆,且(A+E)
-1
=E-B. (2)由(1)的(A+E)
-1
=E-B,[*](A+E)(E-B)=(E-B)(A+E),即A-AB+E-B=A+E-BA-B.[*]AB=BA. (3)设χ为A的属于特征值λ
i
的特征向量,则Aχ=λ
i
χ,两端左乘B,并利用BA=AB,得A(Bχ)=λ
i
(Bχ),若Bχ≠0,则Bχ亦为A的属于λ
i
的特征向量,因属于λ
i
的特征子空间是一维的,故存在常数μ,使Bχ=μχ,因此χ也是B的特征向量;若Bχ=0,则Bχ=0χ,χ也是B的属于特征值0的特征向量. (4)由条件知A有n个线性无关的特征向量,于是由(3)知B也有n个线性无关的特征向量,故B相似于对角矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/u9t4777K
0
考研数学二
相关试题推荐
求
设f(x)在x=2处连续,且[2f(3-x)-3]/(x-1)=-1,则曲线y=f(x)在点(2,f(2))处的切线方程为________.
下列命题不正确的是().
设随机变量X,Y不相关,X~U(-3,3),Y的密度为f(y)=根据切比雪夫不等式,有P{|X-Y|<3}≥________.
设求矩阵A可对角化的概率.
设f(x)在x0的某一邻域内存在连续的三阶导数,且f’(x0)=f"(x0)=0而f"’(x0)≠0,试证(x0,f(x0))是曲线的拐点,而x0不是f(x)的极值点。
设ψ(x)是x到离x最近的整数的距离,求∫0100ψ(x)dx。
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)证明存在η∈(0,2),使得f(η)=f(0).
设A,B为同阶方阵,(I)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(I)的逆命题不成立.(Ⅲ)当A,B均为实对称矩阵时,试证(I)的逆命题成立.
设函数f(x)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量y的线性主部为0.1,则f’(1)=_______.
随机试题
我国现有的民主党派中唯一一个创立于美国的是()
制备胶剂时,为降低胶块黏度,便于切胶,常加入
对护患关系的理解,不正确的是
我国目前实行的是注册资本制度,要求企业的()与其注册资本相一致。
学校个案工作的对象来源有()。
培训评估的定性方法包括()。
选项四个图形中,只有一个是由题干四个图形拼合而成的,请选出来。
2018年国务院政府工作报告指出,要稳步开展农村人居环境整治三年行动,推进()和垃圾收集处理。
Everythingwillbefavorableforautomakers,iftheykeeponprogressing.
Forwhomisthepassagemostlikelywritten?Astheauthorsuggests,whatshouldtheapplicantknowbeforetheinterview?
最新回复
(
0
)