首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)分别满足f(χ)在χ=0邻域二阶可导,f′(0)=0,且(-1)f〞(χ)-χf′(χ)=eχ-1,则下列说法正确的是
设f(χ)分别满足f(χ)在χ=0邻域二阶可导,f′(0)=0,且(-1)f〞(χ)-χf′(χ)=eχ-1,则下列说法正确的是
admin
2016-10-21
47
问题
设f(χ)分别满足f(χ)在χ=0邻域二阶可导,f′(0)=0,且(
-1)f〞(χ)-χf′(χ)=e
χ
-1,则下列说法正确的是
选项
A、f(0)不是f(χ)的极值,(0,f(0))不是曲线y=f(χ)的拐点.
B、f(0)是f(χ)的极小值.
C、(0,f(0))是曲线y=f(χ)的拐点.
D、f(0)是f(χ)的极大值.
答案
B
解析
已知f′(0)=0.现考察f〞(0).由方程得
又f〞(χ)在χ=0连续
f〞(0)=3>0.因此f(0)是f(χ)的极小值.应选B.
转载请注明原文地址:https://kaotiyun.com/show/uPt4777K
0
考研数学二
相关试题推荐
[*]
设a1>0,an+1==ln(1+an),证明:存在,并求此极限.
设D是xOy平面上以(1,1)(-1,1)和(-1,-1)为顶点的三角形区域,D1是D在第一象限的部分,则(xy+cosx·siny)dxdy=________。
设f(x)在[0,+∞)上连续,且∫01f(x)dx<-,证明:至少存在一个ξ∈(0,+∞),使得f(ξ)+ξ=0
已知y1=xex+e2x,y2=xex+e-x,y3=xex+e2x-e-x是某二阶线性非齐次微分方程的三个解,求此微分方程。
设y1,y2是二阶常系数线性齐次方程y"+p(x)y’+q(x)y=0的两个特解,则由y1(x)与y2(x)能构成该方程的通解,其充分条件是________。
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求A的属于特征值3的特征向量.
随机试题
终局行政决定行为
毛泽东最伟大的历史功绩是
白色稠厚呈凝乳块状白带主要见于
梁先生,59岁,无痛性血尿,反复发作3个月余,应首先考虑
连某,月经初潮13岁,周期28d,经期3~5d,可简写成()。
患者女,32岁。在得知自己被确诊为乳腺癌早期时,忍不住躺在病床上失声痛哭。这时护士问:“你现在觉得怎么样?”但患者一直低头不语,不愿意和护士沟通。之后的几天内,患者情绪很低落,常为一些小事伤心哭泣。当护士试图和患者沟通时,目前影响护患沟通的核心问题是患
能够容纳采暖系统水量变化、恒定系统的压力和补水,有时还具有排气作用的设备为()。
该工程项目的计算工期为()个月。工作B的总时差和自由时差为()个月。
公积金个人住房贷款的申请者应具备的基本条件包括()
一个栈的初始状态为空。现将元素1、2、3、4、5、A、B、C、D、E依次入栈,然后再依次出栈,则元素出栈的顺序是()。
最新回复
(
0
)