首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B均是n阶非零矩阵,已知A2=A,B2=B,且AB=BA=O,则下列3个说法: ①0未必是A和B的特征值; ②1必是A和B的特征值; ③若α是A的属于特征值1的特征向量,则α必是B的属于特征值0的特征向量. 正确说法的
设A,B均是n阶非零矩阵,已知A2=A,B2=B,且AB=BA=O,则下列3个说法: ①0未必是A和B的特征值; ②1必是A和B的特征值; ③若α是A的属于特征值1的特征向量,则α必是B的属于特征值0的特征向量. 正确说法的
admin
2019-08-12
50
问题
设A,B均是n阶非零矩阵,已知A
2
=A,B
2
=B,且AB=BA=O,则下列3个说法:
①0未必是A和B的特征值;
②1必是A和B的特征值;
③若α是A的属于特征值1的特征向量,则α必是B的属于特征值0的特征向量.
正确说法的个数为
选项
A、0个
B、1个
C、2个
D、3个
答案
C
解析
A是n阶非零矩阵,设λ是A的特征值,α是对应的特征向量,则Aα=λα.因为A
2
=A,于是A
2
α=Aα,λ
2
α=λα,(λsup>2一λ)α=0.由于α≠0,故有λ
2
一λ=0,所以λ=1或0.
又由于A
2
=A,即(E—A)A=O,且A≠O,所以齐次线性方程组(E—A)x=0有非零解.从而,|E—A|=0,故知λ=1是A的特征值,又因为AB=O,B≠O,所以齐次线性方程组Ax=0有非零解.由此可知,|A|=0,故λ=0也是A的特征值.
同样可证,矩阵B的特征值必是1和0.
由于1是A的特征值,α是对应的特征向量,则有Aα=α.两端左边乘矩阵B,得
Bα=B(Aα)=(BA)α.
因为BA=O,所以 Bα=0=0α.
由此可知,若α是A的属于特征值1的特征向量,则α必是B的属于特征值0的特征向量.
转载请注明原文地址:https://kaotiyun.com/show/uSN4777K
0
考研数学二
相关试题推荐
设矩阵An×n正定,证明:存在正定阵B,使A=B2.
设A、B都是n阶矩阵,则A与B相似的一个充分条件是
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
设f(x,y)=f(x,y)在点(0,0)处是否连续?
设二元函数计算二重积分
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设,P点的坐标为求点M,使得L在M点处的法
设f(x1,x2,…,xn)=XTAX是正定二次型.证明:举例说明上述条件均不是f(x1,x2,…,xn)正定的充分条件.
求函数z=x2+y2+2x+y在区域D={(x,y)|x2+y2≤1)上的最大值与最小值.
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x←0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
随机试题
根据以下资料,回答问题。净收入57.33亿元,同比下降15.43%;证券投资收益(含公允价值变动)514.05亿元。同比增长215.17%;利息净收入69.04亿元,同比增长4.94%;当期实现净利润440.16亿元,同比增长86.83%;119家公
TinyInvadersThehumanbodyistrulyamazing.Itallowsustosensetheworldaroundus,todoworkandhavefunandtomov
下列哪些是急性心肌梗死溶栓成功的指征()。
食管癌病人胸腔闭式引流出现食物残渣,考虑()
根据《药品不良反应报告和监测管理办法》,药品不良反应是指
下列于年度资产负债表日至财务报告批准报出日之间发生的事项中,属于资产负债表日后事项的有( )。
解题方案的准确而完整的描述称为【】。
Anoverheadabsorptionrateisusedto______.
WhoisGeorgeMitchell?
NewZealandisfamousforitsagriculture.Mostoftheexportscomefromthefarms.Yetonlyabout10%ofthelaborforceworki
最新回复
(
0
)