首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an是一组n维向量,已知n维单位坐标向量e1,e2,…,en能由它们线性表示,证明α1,α2……αn线性无关.
设a1,a2,…,an是一组n维向量,已知n维单位坐标向量e1,e2,…,en能由它们线性表示,证明α1,α2……αn线性无关.
admin
2018-08-12
33
问题
设a
1
,a
2
,…,a
n
是一组n维向量,已知n维单位坐标向量e
1
,e
2
,…,e
n
能由它们线性表示,证明α
1
,α
2
……α
n
线性无关.
选项
答案
n维单位向量e
1
,e
2
,…,e
n
线性无关,有r(e
1
,e
2
,…,e
n
)=n.又因为n维单位坐标向量e
1
,e
2
,…,e
n
能由a
1
,a
2
,…,a
n
线性表示,则可得n=r(e
1
,e
2
,…,e
n
)≤r(a
1
,a
2
,…,a
n
).又a
1
,a
2
,…,a
n
是一组n维向量,因此r(a
1
,a
2
,…,a
n
)≤n综上所述r(a
1
,a
2
,…,a
n
)=n.故a
1
,a
2
,…,a
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/smj4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ).
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
设f(x)在[a,+∞)上连续,且存在.证明:f(x)在[a,+∞)上有界.
[*]注解求n项之积或和的极限常用方法有:(1)先计算其积或和,再计算其极限;(2)夹逼定理;(3)定积分
设曲线L1与L2皆过点(1,1),曲线L1在点(x,y)处纵坐标与横坐标之商的变化率为2,曲线L2在点(x,y)处纵坐标与横坐标之积的变化率为2,求两曲线所围成区域的面积.
设k为常数,方程在(0,+∞)内恰有一根,求k的取值范围.
设区域D由x=0,y=0,x+y=,x+y=1围成,若I1=[ln(x+y)]3dxdy,I2=(x+y)3dxdy,I3=sin3(x+y)dxdy,则()
设矩阵有三个线性无关特征向量,λ=2是A的二重特征值,试求可逆阵P,使得P-1AP=A,A是对角阵.
设γ1,γ2,…,γs和η1,η2,…,ηs分别是AX=0和BX=0的基础解系,证明:AX=0和BX=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
随机试题
Whatdoestheverbformoftheword"renovation"meaninPara.1?.WhichofthefollowingisNOTtrueaccordingtotheauthor?
对支原体感染治疗无效的药物是
《企业财务通则》的适用范围是()。
《建筑地基基础设计规范》规定嵌岩灌注桩桩底进入微风化岩体的最小深度为:
城市停车设施按服务对象又可分为()。
根据系统运行时间的不同,空调可分为( )。
在我国,基金管理人只能由依法设立的()担任。
Eventoday,whenairandroadtravelhasmadeAfricasoreadilyaccessibletoEuropeansandAmericans,thereareinnumerableaspe
【B1】【B8】
PredicationanalysisisproposedbyBritishlinguist
最新回复
(
0
)