首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)一1,试证:对任何满足0<k<1的常数k,存在点ξ∈(0,1),使得f’(ξ)=一k.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)一1,试证:对任何满足0<k<1的常数k,存在点ξ∈(0,1),使得f’(ξ)=一k.
admin
2019-02-26
74
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)一1,
试证:对任何满足0<k<1的常数k,存在点ξ∈(0,1),使得f’(ξ)=一k.
选项
答案
作辅助函数F(x)=f(x)+kx,则F(x)在[0,1]上连续,在(0,1)内可导,且F’(x)=f’(x)+k. 由f(0)=f(1)一1,[*]F(1)= 1+k,所以,[*]<F(0)<F(1). 由介值定理,存在点c∈[*]使得F(c)=F(0).因此,F(x)在[0,c]上连续,在(0,c)内可导,且F(0)=F(c).由洛尔定理,存在点ξ∈(0,c)[*](0,1),使得F’(ξ)=f’(ξ)+k=0,即f’(ξ)=一k.
解析
这是讨论函数在某点取定值的问题,可转化为导函数的存在性问题.
f’(ξ)=一k<=>f’(ξ)+k=0
<=>[f(x)+kx]’|
x=ξ
=0
<=>F(x)= f(x)+kx的导数在(0,1)内有零点.
于是,我们只要验证F(x)在[0,1]上或其子区间上满足洛尔定理的全部条件.
在本题的证明过程中综合运用了辅助函数法和辅助区间法,构造辅助函数的方法是:将待证的结论变形为f’(ξ)+k=0,即函数F(x)=f(x)+kx的导函数在(0,1)内存在零点的形式.然后取该函数作为用洛尔定理证明本题的辅助函数.由于F(x)在区间[0,1]的端点的值不相等,再由已知条件和介值定理构造使F(x)在端点值相等的辅助区间[0,c],c∈
然后应用洛尔定理得到要证明的结论.
转载请注明原文地址:https://kaotiyun.com/show/uU04777K
0
考研数学一
相关试题推荐
设A是m×n阶矩阵,B是n×m阶矩阵,则().
下列矩阵中,正定矩阵是
设总体X与Y都服从正态分布N(0,σ2),已知X1,X2,…,Xm与Y1,Y2,…,Yn是分别来自总体X与Y的两个相互独立的简单随机样本,统计量Y==()
设随机变量X和Y相互独立同分布,已知P{X=k}=p(1一p)k一1,k=1,2,…,0<p<1,则P{X>Y}的值为()
设f(x+1)=af(x)总成立,f’(0)=b,a≠1,b≠1为非零常数,则f(x)在点x=1处
下列矩阵中,不能相似对角化的矩阵是()
(2010年)设P为椭球面S:x2+y2+z2一yz=1上的动点,若S在点P的切平面与xOy面垂直,求P点的轨迹C并计算曲面积分其中∑是椭球面S位于曲线C上方的部分。
(2002年)设函数f(x)在(一∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d)。记(I)证明曲线积分I与路径L无关;(Ⅱ)当ab=cd时,求I的值。
设总体X的概率密度为其中θ>0是未知参数。从总体X中抽取简单随机样本X1,X2,…,Xn,记=min{X1,X2,…,Xn}。(Ⅰ)求总体X的分布函数F(x);(Ⅱ)求统计量的分布函数F(x);(Ⅲ)如果用作为θ的估计量,讨论它是否具有无偏性
现有奖券100万张,其中一等奖1张,奖金5万元;二等奖4张,每张奖金2500元;三等奖40张,每张奖金250元;四等奖400张,每张奖金25元.而每张奖券2元,试计算买一张奖券的平均收益.
随机试题
避雷器的形式有阀型、管型和保护间隙等。()
下列选项中是数据库管理系统的是()
一圆轴的轴肩尺寸为:D=72mm,d=62mm,r=3mm。材料为40CrNi,其强度极限σB=900MPa,屈服极限σs=750MPa,试计算轴肩的弯曲有效应力集中系数kσ。
五味子素在结构分类上属于
为预防细菌性食物中毒,要杀灭病原体时需对食品进行如何处理
按照FIDIC合同条件,有关业主(或工程师)指定分包商的概念表述正确的是( )。
工程量清单报价对业主和承包商之间承担的工程风险进行了明确划分,业主承担了( )的风险。
甲、乙、丙三人共同设立H有限责任公司,出资比例分别为70%、25%、5%。自2005年开始,公司的生产经营状况严重恶化,甲乙丙三人之间互不配合,不能作出任何有效决议。甲提议通过股权转让摆脱困境被其他股东拒绝。下列说法正确的是()。
1,2,5,14,()。
垄断资本主义阶段竞争的形式有哪些?
最新回复
(
0
)