首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)一1,试证:对任何满足0<k<1的常数k,存在点ξ∈(0,1),使得f’(ξ)=一k.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)一1,试证:对任何满足0<k<1的常数k,存在点ξ∈(0,1),使得f’(ξ)=一k.
admin
2019-02-26
53
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)一1,
试证:对任何满足0<k<1的常数k,存在点ξ∈(0,1),使得f’(ξ)=一k.
选项
答案
作辅助函数F(x)=f(x)+kx,则F(x)在[0,1]上连续,在(0,1)内可导,且F’(x)=f’(x)+k. 由f(0)=f(1)一1,[*]F(1)= 1+k,所以,[*]<F(0)<F(1). 由介值定理,存在点c∈[*]使得F(c)=F(0).因此,F(x)在[0,c]上连续,在(0,c)内可导,且F(0)=F(c).由洛尔定理,存在点ξ∈(0,c)[*](0,1),使得F’(ξ)=f’(ξ)+k=0,即f’(ξ)=一k.
解析
这是讨论函数在某点取定值的问题,可转化为导函数的存在性问题.
f’(ξ)=一k<=>f’(ξ)+k=0
<=>[f(x)+kx]’|
x=ξ
=0
<=>F(x)= f(x)+kx的导数在(0,1)内有零点.
于是,我们只要验证F(x)在[0,1]上或其子区间上满足洛尔定理的全部条件.
在本题的证明过程中综合运用了辅助函数法和辅助区间法,构造辅助函数的方法是:将待证的结论变形为f’(ξ)+k=0,即函数F(x)=f(x)+kx的导函数在(0,1)内存在零点的形式.然后取该函数作为用洛尔定理证明本题的辅助函数.由于F(x)在区间[0,1]的端点的值不相等,再由已知条件和介值定理构造使F(x)在端点值相等的辅助区间[0,c],c∈
然后应用洛尔定理得到要证明的结论.
转载请注明原文地址:https://kaotiyun.com/show/uU04777K
0
考研数学一
相关试题推荐
设随机变量X和Y同分布,概率密度均为且E[a(X+2Y)]=,则a的值为()
设力f=2i一j+2k作用在一质点上,该质点从点M1(1,1,1)沿直线移动到点M2(2,2,2),则此力所做的功为()
设向量组(Ⅰ)可以由向量组(Ⅱ)线性表示,且R(Ⅰ)=R(Ⅱ),证明:向量组(Ⅰ)与(Ⅱ)等价。
设线性方程组与方程x1+2x2+x3=a-1(2)有公共解,求a的值及所有公共解。
(2005年)设Ω是由锥面与半球面围成的空间区域,∑是Ω的整个边界的外侧,则
(2012年)已知曲线L:其中函数f(t)具有连续导数,且f(0)=0,若曲线L的切线与x轴的交点到切点的距离恒为1,求函数f(t)的表达式,并求以曲线L及x轴和y轴为边界的区域的面积。
(2013年)已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的三个解,则该方程的通解为y=____________。
(2016年)已知函数f(x)可导,且f(0)=1,设数列{xn}满足xn+1=f(xn)(n=1,2,…),证明:(I)级数绝对收敛;(Ⅱ)存在,且
设某种元件的使用寿命X的概率密度为其中θ>0为未知参数,又设x1,x2,…,xn是X的一组样本观测值,求参数θ的最大似然估计值。
某种元件使用寿命X~N(μ,102).按照客户要求该元件使用寿命不能低于1000h,现从该批产品中随机抽取25件,其平均使用寿命为=995,在显著性水平α=0.05下确定该批产品是否合格?
随机试题
提单按货物是否已装船,分为_______和_______。
面部、肢体迅速多变的无目的、无规律的不自主动作,称为()
某战士参加野营拉练归来途中自觉右小腿疼痛,绍休息治疗2周后无好转。拍X线片检查发现右腓骨下段横形骨折线,无移位。其骨折的主要成因是
国际上通常认为,可行性研究阶段对投资估算允许的误差率为()。
扣件式钢管脚手架作业层外侧挡脚板的设置高度最小限值是()mm。
采用销售额比率法预测资金需要量时,下列项目中被视为会随销售收入的变动而变动的是()。
各脊神经前支除胸神经外,一般均与临近的前支吻合,交织成神经丛,坐骨神经由()发出。
Thesentence"Aftereachrainshower,anotherInternetmillionairesprangup"(Paragraph1)means______.Whatdoesthepassage
ScientistsinBrazilhaveusedfrogskinto
ManystudentswanttofindfriendsontheInternetasawayofpracticingtheirlanguage【C1】______andlearningmoreaboutnewcu
最新回复
(
0
)