首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设不恒为常数的函数f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(c)=f(b).其中c为(a,b)内的一点,试证:存在点ξ∈(a,b),使得f’’(ξ)
设不恒为常数的函数f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(c)=f(b).其中c为(a,b)内的一点,试证:存在点ξ∈(a,b),使得f’’(ξ)
admin
2017-05-31
55
问题
设不恒为常数的函数f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(c)=f(b).其中c为(a,b)内的一点,试证:存在点ξ∈(a,b),使得f’’(ξ)<0.
选项
答案
由题设知,f(x)在[a,c]和[c,d]上分别满足洛尔定理的全部条件,由洛尔定理,存在点a
1
∈(a,c),b
1
∈(c,b),使得f’(a
1
)=f’(b
1
)=0. 又f’(x)在[a
1
,b
1
]上可导且不恒等于零,所以,必存在点a
2
∈(a
1
,b
1
),使得f’(a
2
)>0,或存在点a
3
∈(a
1
,b
1
),使得f’(a
3
)<0. 当存在a
2
∈(a
1
,b
1
),使f’(a
2
)>0时,由拉格朗日中值定理,存在点ξ∈(a
2
,b
1
),使得[*] 当存在a
3
∈(a
1
,b
1
),使f’(a
3
)<0时,由拉格朗日中值定理,存在点ξ∈(a
3
,b
1
),使得[*] 综上可知,存在点ξ∈(a
1
,b
1
)[*](a,b),使得f’’(ξ)<0.
解析
由题设知,可在[a,c],[c,b]上分别对f(x)用洛尔定理,存在点a
1
∈(a,c),b
1
∈(c,b),使得f’(a
1
)=f’(b
1
)=0.但f(x)不恒等于常数,可知f’(x)≠0.从而可知,
f’(x)在[a
1
,b
1
]上可导,不恒等于零,且f’(a
1
)=f’(b
1
)=0.然后可用拉格朗日中值定理证明存在点ξ∈(a
1
,b
1
),使得f’’(ξ)<0.
为了证明存在点ξ ∈(a,b),使得f’’(ξ)<0,我们可对f(x)应用拉格朗日中值定理和洛尔定理,再对f’(x)应用拉格朗日中值定理.一般来说,若要从函数f(x)的性质出发去证明其k阶导数f
(k)
(x)在某点满足指定的要求,需要对f(x),f’(x),…,f
(k-1)
(x)依次运用微分中值定理.
转载请注明原文地址:https://kaotiyun.com/show/ueu4777K
0
考研数学一
相关试题推荐
求不定积分
求导.
设函数问a为何值时,f(x)在x=0处连续;a为何值时,x=0是f(x)的可去间断点?
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时,向量组(I)与(Ⅱ)等价?
设函数y=f(x)由方程y-x=ex(1-y)确定,则=________;
在曲线z=t,y=-t2,z=t3的所有切线中,与平面x+2y+z=4平行的切线
设f(x,y),φ(x,y)均有连续偏导数,点M0(x0,y0)是函数z=f(x,y)在条件φ(x,y)=0下的极值点,又φ’(x0,y0)≠0,求证:
曲线的曲率及曲率的最大值分别为__________.
随机试题
选择性5-脂氧酶抑制剂是
孕妇缺乏(),会使胎儿的生长发育受到严重影响,以致出生后的“克汀病”,也称“呆小症”。
圆柱形铣刀的后角指在正交平面内测得的后面与()之间的夹角。
输液引起静脉炎时,局部热敷可用
某化工厂发生重大火灾、爆炸事故,死亡15人并摧毁了上亿元的设备。接到事故报告后,厂领导组织采取了如下行动。()行动是不应当采取的。
“备案号”栏应填()。“保费”栏应填()。
《中共中央国务院关于深化教育改革全面推进素质教育的决定》进一步强调指出:“全面推进素质教育,根本上要()来保障”。
现有甲、乙两个水平相当的技术工人需进行三次技术比赛,规定三局两胜者为胜方,如果在第一次比赛中甲获胜,这时乙最终取胜的可能性有多少?()
当教师看到一个学生上课捣乱后,便让该生到走廊里站10分钟。该教师采用的技术是
Itwasonceassumedthatalllivingthingscouldbedividedintotwofundamentalandexhaustivecategories.Multicellularplants
最新回复
(
0
)