首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为同阶方阵, (Ⅰ)如果A,B相似,试证A,B的特征多项式相等. (Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立. (Ⅲ)当A,B均实对称矩阵时,试证(Ⅰ)的逆命题成立.
设A,B为同阶方阵, (Ⅰ)如果A,B相似,试证A,B的特征多项式相等. (Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立. (Ⅲ)当A,B均实对称矩阵时,试证(Ⅰ)的逆命题成立.
admin
2013-09-03
69
问题
设A,B为同阶方阵,
(Ⅰ)如果A,B相似,试证A,B的特征多项式相等.
(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立.
(Ⅲ)当A,B均实对称矩阵时,试证(Ⅰ)的逆命题成立.
选项
答案
(Ⅰ)若A,B相似,那么存在可逆矩阵P,使P
-1
AP=B, 故|λE-B|=|λE-P
-1
AP|=|P
-1
λEP-P
-1
AP|=|P
-1
(λE-A)P|= |P
-1
|λE-A||P|=|λE-A|. (Ⅱ)令A=[*],那么|λE-A|=λ=|λ
2
=E-B|. 但A,B不相似,否则,存在否逆矩阵P,使P
-1
AP=B=0.从而A=P0P
-1
=0,矛盾,亦可从r(A)=1,r(B)=0而知A与B不相似. (Ⅲ)由A,B均为实对称矩阵知,A,B均相似于对角阵.若A,B的特征多项式相等,记特征多项式的根为λ
1
,…,λ
1
,则有A相似于[*] 即存在可逆矩阵P,Q使P
-1
AP=[*] 于是(PQ
-1
)
-1
A(PQ
-1
)=B.由PQ
-1
为可逆矩阵知,A与B相似.
解析
转载请注明原文地址:https://kaotiyun.com/show/fD54777K
0
考研数学一
相关试题推荐
设实二次型f(x1,x2,x3)=xTAx的秩为2,且α1=(1,0,0)T是(A-2E)x=0的解,α2=(0,-1,1)T是(A-6E)x=0的解.求方程组f(x1,x2,x3)=0的解.
设二次型f(x1,x2,x3)=xTAx=ax21+2x22-2x23+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.求a,b的值;
设函数.设数列{xn}满足证明存在,并求此极限.
已知线性方程组a,b,c满足何种关系时,方程组仅有零解?
设b>a>0,证明不等式
设f(x)为非负连续函数,且,求f(x)在[0,2]上的平均值.
求极限
求直线在平面π:x-y+2x-1=0上的投影直线L0的方程,并求L0绕y轴旋转一周所成曲面的方程.
适当选取函数ψ(x),作变量代换y=ψ(x)u,将y关于x的微分方程化为u关于x的二阶常系数齐次线性微分方程,求ψ(x)及常数λ,并求原方程满足y(0)=1,y’(0)=0的特解.
讨论函数的连续性.
随机试题
简述影响有效沟通的障碍。
大气中的粒子状态污染物中( )又称为可吸入颗粒物,易随呼吸进入人体肺脏,危害人体。
下列有关投资性房地产的会计处理的说法正确的有()。
旅游经营者组织、接待出入境旅游,发现有非法滞留和擅自分团、脱团情形的,应当依法及时向有关部门报告,下列不属于有关部门的是()。
“开阔视野,拓展想象的空间,激发探索未知领域的欲望,体验探究的愉悦与成功感”属于()学习领域的目标。
材料:楠楠是大一班出了名的调皮孩子。他经常在户外活动时打小朋友,区域活动时破坏小朋友的作品,午休时将女孩儿的辫子和床绑在一起……小朋友都躲着他,同伴也经常向老师“告状”。邢老师把这一切看在眼里,决心帮助楠楠。一天,邢老师把一个漂亮的画本递给楠楠时说道:
在一次对全市中学假期加课情况的检查后,甲、乙、丙三人有如下结论:甲:有学校存在加课问题。乙:有学校不存在加课问题。丙:一中和二中没有暑期加课情况。如果上述三个结论只有一个正确,则以下哪项一定为真?()
A、 B、 C、 D、 D图形中直线数依次是16、13、10、7、(4),是公差为一3的等差数列。
Somepeoplecanquiteaccuratelytimetheendoftheirnight’ssleepatwill,withoutusinganalarmclock,demonstratingthati
A、Indonesia.B、YellowstoneNationalPark.C、TheWales.D、TheGreatBritain.AA是提到lasteruption后听到的地点,为答案。对于对话中提及的时间、地点、数据、顺序应该特别
最新回复
(
0
)