首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组 (I):α1,α2,α3; (II):α1,α2,α3,α4; (Ⅲ):α1,α2,α3,α5. 如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4. 证明向量组α1,α2,α3,α5-α4的秩为4.
已知向量组 (I):α1,α2,α3; (II):α1,α2,α3,α4; (Ⅲ):α1,α2,α3,α5. 如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4. 证明向量组α1,α2,α3,α5-α4的秩为4.
admin
2013-04-04
38
问题
已知向量组
(I):α
1
,α
2
,α
3
;
(II):α
1
,α
2
,α
3
,α
4
;
(Ⅲ):α
1
,α
2
,α
3
,α
5
.
如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.
证明向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
选项
答案
r(I)=r(Ⅱ)=3,所以α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,因此α
4
可 由α
1
,α
2
,α
3
线性表出,设为α
4
=l
1
α
1
+l
2
α
2
+l
3
α
3
. 若k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
(α
5
-α
4
)=0,即 (k
1
-l
1
k
4
)α
1
+(k
2
-l
2
k
4
)α
2
+(k
3
-l
3
k
4
)α
3
+k
4
α
5
=0, 由于r(Ⅲ)=4, 即α
1
,α
2
,α
3
,α
5
线性无关,故必有 [*] 解出k
4
=0,k
3
=0,k
2
=0,k
1
=0. 于是α
1
,α
2
,α
3
,α
5
-α
4
线性无关,即其秩为4.
解析
转载请注明原文地址:https://kaotiyun.com/show/FX54777K
0
考研数学一
相关试题推荐
微分方程y"一λ2y=eλx+e一λx(λ>0)的特解形式为
已知微分方程y″+ay′+by=cex的通解为y=(C1+C2x)e—x+ex,则a,b,c依次为()
[2004年]等于().
(96年)设函数f(x)在区间(一δ,δ)内有定义,若当x∈(一δ,δ)时,恒有|f(x)|≤x2,则x=0必是f(x)的
设A为四阶实对称矩阵,且A2+A=O,若A的秩为3,则A相似于()
[2000年]设f(x)在点x=a处可导,则函数∣f(x)∣在点x=a处不可导的充分条件是().
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为
(16年)已知动点P在曲线y=x3上运动,记坐标原点与点P间的距离为l.若点P的横坐标对时间的变化率为常数v0,则当点P运动到点(1,1)时,l对时间的变化率是_______.
若二次型f(x1,x2,x3)=2x21+x22+x23+2x1x2+tx2x3正定,则t的取值范围是_______________.
证明方程有两个实根,并判定这两个根的范围。
随机试题
下列费用中属于预防成本的是
机体对酸碱平衡的调节机制有
完全型艾滋病的诊断标准有()(2008年)
视远物和近物都需要眼进行调节的折光异常是
A、药物引起的反应与个人体质有关,与用药剂量无关B、等量药物引起和一般病人相似但强度更高的药理效应或毒性C、用药一段时间后,病人对药物产生精神上的依赖,中断用药后,会出现主观上的不适D、长期用药后,产生了生理上的依赖,停药后出现了
常用的抽样方法有()检查法。
根据《合伙企业法》的规定,下列关于合伙企业合伙人的表述中,正确的有()。
生产物流系统的设计原则包括()。
A、$9.B、$18.C、$12.D、$36.CM:Thebagis$18now.W:Yes,it’sexactlyahalfmorethanitwastwomonthsago.Q:Whatwasthe
Betteraccesstohealthcaredatahelpslocalgovernmentsimprovepreventivehealthpoliciesaimedatreducingoverallmedicalc
最新回复
(
0
)