首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组A:a1=,问α,β为何值时: 向量b能由向量组A线性表示,且表示式不唯一,并求一般表达式.
设有向量组A:a1=,问α,β为何值时: 向量b能由向量组A线性表示,且表示式不唯一,并求一般表达式.
admin
2016-05-31
28
问题
设有向量组A:a
1
=
,问α,β为何值时:
向量b能由向量组A线性表示,且表示式不唯一,并求一般表达式.
选项
答案
当α=-4,β=0时, [*] r(A)=r(A,b)=2<3,方程Ax=b有无穷多解,即向量b可由向量组A线性表示,且表示式不唯一. 且方程Ax=b的通解为 [*] 故b由向量组A线性表示的一般表达式为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/uhT4777K
0
考研数学三
相关试题推荐
设α1=(2,-1,3,0),α2=(1,2,0,-2),α3=(0,-5,3,4),α4=(-1,3,t,0),则________时,α1,α2,α3,α4线性相关.
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设β,α1,α2线性相关,β,α2,α3线性无关,则().
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
用适当的变换将下列方程化为可分离变量的方程,并求出通解:;(2)(x+y)2yˊ=1;(3)xyˊ+y=yln(xy);(4)xyˊ+x+sin(x+y)=0.
求下列齐次型方程的通解:(1)xyˊ=y(1ny-lnx);;(3)xyˊ=xey/x+y;(4)(x+y)yˊ=x-y;(5)(x2+y2)dx-xydy=0;(6)(x+ycosy/x)dx-xcosy/xdy=0.
求下列微分方程的通解(1)xyˊ+y-2y3=0;(2)xyˊlnx+y=x(1+lnx);(3)yˊ+ex(1-e-y)=0;(4)yy〞-yˊ2-1=0.
设向量组α1,α2,…,αs线性无关,作线性组合β1=α1+μ1αs,β2=α2+μ2αs,…,βs-1=αs-1+μs-1αs,则向量组β1,β2,…,βs-1线性无关,其中s≥2,μi为任意实数.
设A=β=计算行列式丨A丨;
若四阶矩阵A与B为相似矩阵,A的特征值为1/2、1/3、1/4、1/5,则行列式|B-1-E|=_______.
随机试题
进行企业发展能力分析时,结果层面主要是对
关于短TI反转恢复脉冲序列成像的叙述,错误的是
“乌金衣”的含义是
A.水解B.光学异构化C.氧化D.聚合E.脱羧盐酸普鲁卡因的降解的主要途径是
火旋风的出现会使火蔓延速度和强度()。
下列关于钧瓷的叙述不正确的是()。
曹彬,字国华,彬始生周岁,父母以百玩之具罗于席,观其所取。彬左手持干戈,右手持俎豆,斯须取一印,他无所视,人皆异之。五年,使吴越,致命讫即还。私觌①之礼,一无所受。吴越人以轻舟追遗之,至于数四,彬犹不受。既而曰:“吾终拒之,是近名也。”遂受而
科学事业费与科技三项费相比差多少亿元?科学事业费占财政科技拨款总额的比重:
在一次期中考试中,小明考得很差,家长和老师批评了他。在以后的几次考试中,他的成绩越来越差。现在他一听到老师宣布要考试,就全身紧张、脸色苍白。以下哪个心理学原理可以解释这种现象?()。
A、 B、 C、 C
最新回复
(
0
)