首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]连续,在(0,1)内f(χ)>0且茄f′(χ)=f(χ)+aχ2,又由曲线Y=f(χ)与直线χ=1,y=0围成平面图形的面积为2,求函数y=f(χ),问a为何值,此图形绕χ轴旋转而成的旋转体体积最小?
设f(χ)在[0,1]连续,在(0,1)内f(χ)>0且茄f′(χ)=f(χ)+aχ2,又由曲线Y=f(χ)与直线χ=1,y=0围成平面图形的面积为2,求函数y=f(χ),问a为何值,此图形绕χ轴旋转而成的旋转体体积最小?
admin
2018-04-18
97
问题
设f(χ)在[0,1]连续,在(0,1)内f(χ)>0且茄f′(χ)=f(χ)+
aχ
2
,又由曲线Y=f(χ)与直线χ=1,y=0围成平面图形的面积为2,求函数y=f(χ),问a为何值,此图形绕χ轴旋转而成的旋转体体积最小?
选项
答案
求旋转体的体积. [*] 求V(a)的最小值点.由于 [*] 则当a=-5时f(χ)>0(χ∈(0,1)),旋转体体积取最小值.
解析
转载请注明原文地址:https://kaotiyun.com/show/ujk4777K
0
考研数学二
相关试题推荐
设A为n阶方阵,A*为A的伴随矩阵,且A11≠0,证明:方程组Ax=b(b≠0)有无穷多解的充要条件中b为A*x=0的解.
用导数的定义求函数y=1-2x2在点x=1处的导数。
设A为3阶矩阵,P为3阶可逆矩阵,且,若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=().
设α1,α2,α3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设(X,Y)是二维离散型随机向量,其分布为P(X=xi,Y=yj}=pij(i=1,2,…,m;j=1,2,…,n),称(pij)m×n为联合概率矩阵.证明:X与Y相互独立的充要条件是(pij)m×n的秩为1.
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在f∈(0,1),使得f(ξ)=1-ξ;
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α4,α5.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
证明:|arctanx-arctany|≤|x-y|
随机试题
胃的癌前病变和癌前疾病不包括
散发性先天性甲状腺功能低下,下列哪项措施是错误的
25岁农村妇女,与邻居口角,被对方打了一耳光,患者走回家中,取一菜刀追赶对方,被石头绊倒,当即神志不清,牙关紧闭,双手握拳,四肢僵硬,呼之不应,半小时后遂来急诊,尚未清醒。经初步处理后,患者已清醒,下一步最宜采取的治疗是
患者女,45岁。在给果树喷洒农药时,不慎中毒,出现恶心、呕吐、多汗、流涎、瞳孔缩小、呼吸困难等症状,急诊入院。治疗时使用阿托品静脉给药,当出现阿托品中毒时首先应采取的治疗措施是()
根据《行政处罚法》的规定,对公民当场处以罚款的数额为()。
通风机铭牌上标示的风压指的是()。
【背景资料】某水利枢纽工程由混凝土重力坝、溢洪道和坝后式厂房等组成。。发包人与承包人签订了混凝土重力坝施工合同。合同约定的节点工期要求:(1)2005年12月1日进场准备(指“四通一平”);(2)围堰填筑及基坑排水在2006年11月1日开始;(3
平行登记法下总账与其所属明细账之间在数量尚得勾稽关系是( )。
税务登记范围是指有法律规定的()的各类纳税人。
活动课程论的倡导者是奥苏贝尔。()
最新回复
(
0
)