首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求证:ex+e-x+2cosx=5恰有两个根.
求证:ex+e-x+2cosx=5恰有两个根.
admin
2016-10-20
48
问题
求证:e
x
+e
-x
+2cosx=5恰有两个根.
选项
答案
引入函数f(x)=e
x
+e
-x
+2cosx-5,则f(x)是(-∞,+∞)上的连续偶函数,且f(0)=-1<0,f’(x)=e
x
-e
-x
-2sinx,从而f’(0)=0.又f’’(x)=e
x
+e
-x
-2cosx=[*]+2(1-cosx)>0([*]>0)成立,由此可见f’(x)当x≥0时单调增加,于是f’(x)>f’(0)=0当x>0时成立.这表明f(x)在x≥0是单调增加的.注意f(π)=e
π
+e
-π
-7>2
3
-7=1>0,故根据闭区间上连续函数的性质可知f(x)=0在(0,π)内至少有一个根,结合f(x)在x≥0严格单调增加可知f(x)=0有且仅有一个正根.由f(x)为(-∞,+∞)上偶函数,f(x)=0还有且仅有一个负根. 故方程e
x
+e
-x
+2cosx=5恰有两个根.
解析
转载请注明原文地址:https://kaotiyun.com/show/urT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
求密度为常数μ,半径为R的球体x2+y2+z2≤R2对位于点(0,0,a)(a>R)处单位质点的引力,并说明该引力如同将球的质量集中在球心时两质点间的引力.
求由下列方程所确定的隐函数y=y(x)的导数dy/dx:(1)y=1-xey;(2)xy=ex+y;(3)xy=yx;(4)y=1+xsiny.
设半径为r的球的球心在半径为a的定球面上,试求r的值,使得半径为r的球的表面位于定球内部的那一部分的面积取最大值.
试求a,b的值,使得由曲线y=cosx(0≤x≤π/2)与两坐标轴所围成的图形的面积被曲线y=asinx与y=bsinx三等分.
随机试题
关于屋面防水水落口做法的说法,正确的是()。
最适用于治疗中度有机磷中毒的是
升麻葛根汤中配伍升麻的用意是()
对于人民法院认为起诉不符合起诉条件作出的不予受理裁定,原告不服的,可以()。
纳税人未按期缴纳税款的,税务机关除责令限期缴纳外,从滞纳税款之日起,应()的滞纳金。
证券A和B组成的证券组合P中,A、B完全正相关时,。()
持票人未按照规定期限提示付款的,付款人的票据责任解除。()
持久性心境低落为()。
以下属于软件危机典型表现的是()。
TheappearanceofthestarGammaCepheivariesregularly.Theexistenceofaplanetcirclingastarcancauseregularvariation
最新回复
(
0
)