首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求证:ex+e-x+2cosx=5恰有两个根.
求证:ex+e-x+2cosx=5恰有两个根.
admin
2016-10-20
47
问题
求证:e
x
+e
-x
+2cosx=5恰有两个根.
选项
答案
引入函数f(x)=e
x
+e
-x
+2cosx-5,则f(x)是(-∞,+∞)上的连续偶函数,且f(0)=-1<0,f’(x)=e
x
-e
-x
-2sinx,从而f’(0)=0.又f’’(x)=e
x
+e
-x
-2cosx=[*]+2(1-cosx)>0([*]>0)成立,由此可见f’(x)当x≥0时单调增加,于是f’(x)>f’(0)=0当x>0时成立.这表明f(x)在x≥0是单调增加的.注意f(π)=e
π
+e
-π
-7>2
3
-7=1>0,故根据闭区间上连续函数的性质可知f(x)=0在(0,π)内至少有一个根,结合f(x)在x≥0严格单调增加可知f(x)=0有且仅有一个正根.由f(x)为(-∞,+∞)上偶函数,f(x)=0还有且仅有一个负根. 故方程e
x
+e
-x
+2cosx=5恰有两个根.
解析
转载请注明原文地址:https://kaotiyun.com/show/urT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
设u(x,y,z),v(x,y,z)是两个定义在闭区域Ω上的具有二阶连续偏导数的函数,依次表示u(x,y,z),v(x,y,z)沿∑的外法线方向的方向导数.证明:其中∑是空间闭区域Ω的整个边界曲面.
设线性无关的函数y1,y2与y3均为二阶非齐次线性方程的解,C1与C2是任意常数.则该非齐次线性方程的通解是().
用常数变易法求下列线性微分方程的通解:(1)y〞+y=secx,已知y1(x)=cosx是方程y〞+y=0的一个解;(2)(2x-1)y〞-(2x+1)yˊ+2y=0,已知y1(x)=ex是该方程的一个解;(3)x2y〞-2xyˊ+2y=2x3,已知
证明:在自变量的同一变化过程中,(1)若f(x)是无穷大,则1/f(x)是无穷小;(2)若f(x)是无穷小且f(x)≠0,则1/f(x)是无穷大。
利用等价无穷小的代换性质,求下列极限:
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则a=______,b=______.
随机试题
—ProfessorLance,yourlectureonartificialintelligenceisveryinteresting!—________.
运输散装直立气瓶时,运输车辆应具有固定气瓶的相应装置并确保气瓶处于直立状态,气瓶高出车辆栏板部分不应大于气瓶高度的()。
A、howeverB、narrowC、shallowD、snowyAB、C、D三项的划线部分发[eu],而A项划线部分发[au],因此选A项。
婴儿,男,出生6天,啼哭拒食。检查发现口腔黏膜出现微凸的软白小点,擦去后可露出出血面,可能的诊断为()
A.GPPB.GCPC.GMPD.GLPE.GSP药物临床试验机构必须遵守
根据《营业税改征增值税试点方案》的规定,在试点地区,下列各项中,属于增值税应税范围的有()。
标准化过程的要点包括()。
企业对培训过程实施评估,可以选择的方式包括()。
学校对学生的教育管理的具体执行者是()。
下面关于命令按钮的叙述中错误的是
最新回复
(
0
)