首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(χ)在[0,1]上连续,且f(χ)<1,证明:2χ-∫0χf(t)dt=1在(0,1)内有且仅有一个实根.
设F(χ)在[0,1]上连续,且f(χ)<1,证明:2χ-∫0χf(t)dt=1在(0,1)内有且仅有一个实根.
admin
2021-11-09
63
问题
设F(χ)在[0,1]上连续,且f(χ)<1,证明:2χ-∫
0
χ
f(t)dt=1在(0,1)内有且仅有一个实根.
选项
答案
令φ(χ)=2χ-∫
0
χ
f(t)dt-1, φ(0)=-1,φ(1)=1-∫
0
1
f(t)dt 由f(χ)<1得∫
0
1
f(t)dt<1,从而φ(1)=1-∫
0
1
f(t)dt>0, 由零点定理,存在c∈(0,1),使得φ(c)=0,即方程2χ-∫
0
χ
f(t)dt=1至少有一个实根. 因为φ′(χ)=2-f(χ)>0,所以φ(χ)在[0,1]上严格递增,故2χ-∫
0
χ
f(t)dt=1在(0,1)内有且仅有一个实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/uuy4777K
0
考研数学二
相关试题推荐
=_______.
=_______(其中a为常数).
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
证明:若矩阵A可逆,则其逆矩阵必然唯一.
设A为n阶矩阵,且A2-2A-8E=O.证明:r(4E-A)+r(2E+A)=n.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.求A的其他特征值与特征向量。
设A为3阶实对称矩阵,α1=(1,﹣1,﹣1)T,α2=(﹣2,1,0)T是齐次线性方程Ax=0的基础解系,且矩阵A-6E不可逆,则(Ⅰ)求齐次线性方程组(A-6E)x=0的通解;(Ⅱ)求正交变换x=Qy将二次型xTAx化为标准形;(Ⅲ)求(A-3E
设当x→0时,f(x)=ax3+bx与是等价无穷小,则()
极限的充要条件是()
设当χ→0时,忌sin2χ~,则k=_______.
随机试题
关于肾血管性高血压,下列哪些检查是合适的
下列关于非ST段抬高(NSTEMI)心肌梗死的叙述,正确的是
中枢化学敏感区最敏感的刺激因素为
A.经济标准B.疗效标准C.社会标准D.行为标准E.科学标准评价医疗行为是否有利于人类生存和改善,是否有利于人类健康符合
实际流体恒定流关于水头沿程变化规律的说法,正确的是()。
在编制施工成本计划中,将所有工作都按最迟必须开始时间开始绘制S形曲线,会产生()的情况。
( )不属于交易费用。
在中国教育制度发展史上,中学阶段最早兼顾升学和就业双重需要的学制是()。
某研究者提出一个假想:海马部位可能与复杂认知加工有关,与简单认知加工无关。为此,他进行了如下实验:随机选取30只白鼠,切除海马,让其中一半学习简单迷津,另一半学习复杂迷津。在白鼠练习迷津过程中,简单组10次以内就出现完全正确的情况,而复杂组学习30次以后才
证明:r(AB)≤rain{r(A),r(B)}
最新回复
(
0
)