首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B,C是三个随机事件,P(ABC)=0,且0<P(C)<1,则一定有( )
设A,B,C是三个随机事件,P(ABC)=0,且0<P(C)<1,则一定有( )
admin
2017-11-30
70
问题
设A,B,C是三个随机事件,P(ABC)=0,且0<P(C)<1,则一定有( )
选项
A、P(ABC)=P(A)P(B)P(C)。
B、P[(A+B)|C]=P(A |C)+P(B|C)。
C、P(A+B+C)=P(A)+P(B)+P(C)。
D、P[(A+B)
]=P(A|
)+P(B|
)。
答案
B
解析
选项A:由于不知道P(A)或P(B)是否为零,因此选项A不一定成立。
选项B:P[(A+B)C]=P(AC+BC)=P(AC)+P(BC)-P(ABC)
=P(AC)+P(BC),
P[(A+B)|C]=
=P(A|C)+P(B|C)。
可见选项B正确。
选项C:P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC),
由于不能确定P(AB),P(AC),P(BC)的概率是否全为零,因此选项C不一定成立。
选项D:
而P(AB
)=P(AB)-P(ABC),其值是否为零不能判断,因此选项D也不一定成立。
故选B。
转载请注明原文地址:https://kaotiyun.com/show/uyr4777K
0
考研数学一
相关试题推荐
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
记曲面z=x2+y2一2x-y在区域D:x≥0,y≥0,2x+y≤4上的最低点P处的切平面为π,曲线在点Q(1,1,一2)处的切线为l,求点P到直线l在平面π上的投影l’的距离d.
求下列曲面的方程:以曲线为母线,绕z轴旋转一周而生成的曲面;
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
设a为常数,,则f(x)在区间(一∞,+∞)内的零点个数情况为()
设A,B为三阶矩阵,且A~B,且λ1=1,λ2=2为A的两个特征值,|B|=2,求
设A,B为三阶矩阵,且AB=A—B,若λ1,λ2,λ3为A的三个不同的特征值,证明:AB=BA;
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.求矩阵A的特征值;
假设有四张同样的卡片,其中三张上分别只印有a1,a2,a3,而另一张上同时印有α1,α2,α3.现在随意抽取一张卡片,令Ak={卡片上印有ak)。证明:事件A1,A2,A3两两独立但不相互独立.
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1-α2,α1-2α2+α3,(α1一α3),α1+3α2-4α3,是导出组Ax=0的解向量的个数为()
随机试题
婴儿出现(),如出血位置无法压迫,可让婴儿躺下,用拳头或手掌根部把出血的血管压向对侧的骨头方向。
常见的肛周脓肿是
治疗阴虚内热型内伤发热的首选方剂是
可能的诊断是若需要应采取的正确预防措施是
喜欢买报纸的人、常常________于报刊亭的人必然有着阅读的兴趣并养成了习惯,这样的行为不仅影响着个人的生活,也在________中影响着他人。将报刊亭打造成一个公共的阅读空间,就像现在随处可见的自助K歌房一样,这种________又便捷的阅读点,激发的
典型欠阻尼二阶系统超调量大于5%,则其阻尼ξ的范围为()。
从各国保险立法来看,关于投保人或被保险人的告知方式一般分为以下两种,即()。
某企业2011年年底“应付账款”科目月末贷方余额20000元,其中:“应付甲公司账款”明细科目贷方余额15000元,“应付乙公司账款”明细科目贷方余额5000元;“预付账款”科目月末贷方余额10000元,其中:“预付账款——甲工厂”明细科目贷方余额
Manystudentsfindtheexperienceofattendinguniversitylecturestobeareallyconfusingand【C1】______experience.Thelecture
Ithasbeenproventhatshortburstsofconcentrationrepeatedfrequentlyaremuchmore【B1】______thanonelongperiod.So,even
最新回复
(
0
)