首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
抛物线y=x2上任意点(a,a2)(a>0)处引切线L1,在另一点处引另一切线L2,L2与L1垂直. (Ⅰ)求L1与L2交点的横坐标x1; (Ⅱ)求L1,L2与抛物线y=x2所围图形的面积S(a); (Ⅲ)问a>0取何值时S(a)取最小值.
抛物线y=x2上任意点(a,a2)(a>0)处引切线L1,在另一点处引另一切线L2,L2与L1垂直. (Ⅰ)求L1与L2交点的横坐标x1; (Ⅱ)求L1,L2与抛物线y=x2所围图形的面积S(a); (Ⅲ)问a>0取何值时S(a)取最小值.
admin
2017-11-22
53
问题
抛物线y=x
2
上任意点(a,a
2
)(a>0)处引切线L
1
,在另一点处引另一切线L
2
,L
2
与L
1
垂直.
(Ⅰ)求L
1
与L
2
交点的横坐标x
1
;
(Ⅱ)求L
1
,L
2
与抛物线y=x
2
所围图形的面积S(a);
(Ⅲ)问a>0取何值时S(a)取最小值.
选项
答案
(Ⅰ)抛物线y=x
2
在点(a,a
2
)处的切线为 L
1
:y=a
2
+2a(x一a),即y=2ax— a
2
. 另一点(b,b
2
)处的切线为 L
2
:y=b
2
+2b(x一b),即y=2bx—b
2
. 由L
1
与L
2
垂直[*] 它们的交点(x
i
,y
1
)满足 2ax
1
— a
2
= 2bx
1
— b
2
,x
1
=[*] 于是 x
1
=[*] (Ⅱ)L
1
,L
2
与y=x
2
所围图形的面积 [*] 由x
1
的表达式知,x
1
—b=a—x
1
[*] [*] (Ⅲ)求导解最值问题,由 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/v6X4777K
0
考研数学三
相关试题推荐
设y=y(x)满足y’=x+y,且满足y(0)=1,讨论级数的敛散性.
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.(1)求导弹运行的轨迹满足的微分方程及初始条件;(2)导弹运行方程.
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)一f(t)dt=0.(1)求f’(x);(2)证明:当x≥0时,e-x≤f(x)≤1.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+.
设二维随机变量(X,Y)在上服从均匀分布,则条件概率=________.
求函数项级数e-x+2e-2x+…+,ne-nx+…收敛时x的取值范围;
设都是正项级数,试证:(1)若收敛;(2)若收敛;(3)若都收敛;(4)若收敛。
罐中有N个硬币,其中有θ个是普通硬币(掷出正面与反面的概率各为0.5),其余N一θ个硬币两面都是正面,从罐中随机取出一个硬币,把它连掷两次,记下结果,但不去查看它属于哪种硬币,如此重复n次,若掷出0次、1次、2次正面的次数分别为,n0,X1,n2,利用(1
设二维随机变量(X,Y)在区域上服从均匀分布,则(X,Y)的关于X的边缘概率密度fx(x)在点x=e处的值为________.
设f(x)二阶可导,且f(0)=0,令g(x)=(Ⅰ)确定a的取值,使得g(x)为连续函数;(Ⅱ)求g’(x)并讨论函数g’(x)的连续性.
随机试题
()不是设备监理工程师应履行的义务。
某外资电子器材有限公司从社会上招收了6名工人,其中有2名14岁的工人,另有1名妇女因性别差异而未被招用,还有1名正在休产假的妇女被同时辞退,职工要求组织工会亦被拒绝。下列选项所述该公司的做法中。错误的是()
_______是检查教师教学效果的必要手段,其目的是改进教学工作。()
某精神病患者,医生问其多大年龄时,患者回答:“33,三月初三生,三月里来桃花开,开花又结果,摘了果子给猴吃……”。此表现属于
具有特定情形的下列哪些证据不能作为定案的根据?()
技术分析理论可以分为以下哪些类型()
甲和乙共同出资设立了茂昌有限责任公司,在下列公司章程条款中,符合《公司法》规定的有( )。
下列哪些行为属于盗窃?()
计算机中十六位浮点数的表示格式为某机器码为1110001010000000,若阶码为移码且尾数为反码,则其十进制真值为(7);若阶码为移码且尾数为原码,则其十进制
Internationalgovernments’inactionconcerningsustainabledevelopmentisclearlyworryingbuttheproactive(主动出击的)approaches
最新回复
(
0
)