首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
admin
2016-10-13
75
问题
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2∫
0
1
f(x)dx.
选项
答案
因为f’(x)在区间[0,1]上连续,所以f’(x)在区间[0,1]上取到最大值M和最小值m,对f(x)一f(0)=f’(c)x(其中c介于0与x之间)两边积分得 ∫
0
1
f(x)dx=∫
0
1
f’(c)xdx, 由m≤f’(c)≤M得m∫
0
1
xdx≤∫
0
1
f’(c)xdx≤M∫
0
1
xdx, 即m≤2∫
0
1
f’(c)xdx≤M或m≤2∫
0
1
f(x)dx≤M, 由介值定理,存在ξ∈[0,1],使得f’(ξ)=2∫
0
1
f(x)dc.
解析
转载请注明原文地址:https://kaotiyun.com/show/v6u4777K
0
考研数学一
相关试题推荐
设非负连续型随机变量X服从指数分布,证明对任意实数r和S,有P{X>r+s|X>s}=P{X>r}.
设X服从[a,b]上的均匀分布,证明αX+β(α>0)服从[aα+β,bα+β]上的均匀分布.
证明f(x)=x-[x]在(-∞,+∞)上是有界周期函数.
设曲线L:f(x,y)=l(f(x,y)具有一阶连续偏导数),过第Ⅱ象限内的点M和第N象限内的点N,F为己上从点M到点N的一段弧,则下列积分小于零的是
已知函数f(x,y)在点(0,0)某邻域内连续,且则
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
已知曲线,其中函数f(t)具有连续导数,且f(0)=0,fˊ(t)>0,(0<t<π/2),若曲线L的切线与x轴的交点到切点的距离值恒为1,求函数f(t)的表达式,并求此曲线L与x轴与y轴无边界的区域的面积.
设f(x)有二阶连续导数,且f’(0)=0,则
设f(x,y)=|x—y|≯(z,y),其中φ(x,y)在点(0,0)的某邻域内连续.则φ(0,0)=0是f(x,y)在点(0,0)处可微的()
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
随机试题
攻毒蚀疮、破散结,外用兼治斑秃的药是
在商标转让中,由________向商标局申请()
某双链DNA纯样品含15%的A,该样品中G的含量为()
能降低血糖的激素是
缺铁性贫血的实验室检查结果应是()
控制过程分为()步骤。
固定资产投资总额是反映固定资产投资()的综合性指标。
为了满足生活习性的不同,鸟类的脚趾也________。秧鸡类有分叉又细长的脚趾,因此它们能在浮水植物上快步走;雁鸭类脚趾上的全蹼,鲣鸟、鸬鹚的半蹼或鹆鹬类的微蹼,都是为了方便地划水,它们的脚趾也很适于在水中游泳;鸠鸽、雉鸡等鸟类的脚趾粗壮有力,它们能在陆地
根据法人的内部结构不同,私法人可以分为()。
A、TheWashingtonFederationofTeachers.B、TheNationalLaborUnion.C、TheAmericanFederationofTeachers.D、TheWashingtonLab
最新回复
(
0
)