首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
admin
2016-10-13
72
问题
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2∫
0
1
f(x)dx.
选项
答案
因为f’(x)在区间[0,1]上连续,所以f’(x)在区间[0,1]上取到最大值M和最小值m,对f(x)一f(0)=f’(c)x(其中c介于0与x之间)两边积分得 ∫
0
1
f(x)dx=∫
0
1
f’(c)xdx, 由m≤f’(c)≤M得m∫
0
1
xdx≤∫
0
1
f’(c)xdx≤M∫
0
1
xdx, 即m≤2∫
0
1
f’(c)xdx≤M或m≤2∫
0
1
f(x)dx≤M, 由介值定理,存在ξ∈[0,1],使得f’(ξ)=2∫
0
1
f(x)dc.
解析
转载请注明原文地址:https://kaotiyun.com/show/v6u4777K
0
考研数学一
相关试题推荐
利用数学期望的性质,证明方差的性质:(1)Da=0;(2)D(X+a)+DX;(3)D(aX)=a2DX.
用集合运算律证明:
设y=y(x)是函数方程ex+y=2+x+2y在点(1,-1)所确定的隐函数,求y〞|(1,-1)和d2y.
证明f(x)=x-[x]在(-∞,+∞)上是有界周期函数.
用列举法表示下列集合:(1)方程x2-7x+12=0的根的集合(2)抛物线y=x2与直线x—y=0交点的集合(3)集合{x||x-1|≤5的整数}
证明:(1)周长一定的矩形中,正方形的面积最大;(2)面积一定的矩形中,正方形的周长最小。
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程(d2x)/(dy2)+(y+sinx)(dx/dy)=0变换为y=y(x)满足的微分方程;
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f〞(x)<0,且f(1)=fˊ(1)=1,则().
设f(x)有二阶连续导数,且f’(0)=0,则
设f(x)在x=0的某邻域内二阶连续可导,且.证明:级数绝对收敛.
随机试题
《子夜》中的人物活动的舞台是()
关于“与下级往来”账户的说明,正确的是()
若随机变量X的分布律为则q=_____.
张某发出报告的时间应是除张某外,下列哪类人员不可能是责任报告人
下列哪些情形构成走私普通货物物品罪?
设图(a)、(b)、(c)三个质量弹簧系统的固有频率分别为ω1、ω2、ω3,则它们之间的关系是:
甲公司是增值税一般纳税人,发生的有关经济业务如下:(1)2013年1月1日,甲公司向丙银行贷款800万元专门用于已开工的厂房建设,年利率为6%,贷款期限为3年,并已全部用于支付工程款,2014年1月1日甲公司又向丁银行贷款600万元(该借款没有专门用途)
“看看谁是个好哨兵”的游戏应用了移情训练法的教育模式,旨在让幼儿习得哨兵具有的良好行为规范和道德要求。()
为了在今天的社会中成功,你必须有大学文凭。对此持怀疑态度的人认为,有许多人高中都没有上完,但他们却很成功。不过,这种成功只是表面的,因为没有大学文凭,一个人是不会获得真正成功的。以下哪项最能说明上述论证中所存在的漏洞?
设R3的两组基为:α1=(1,1,1)T,α2=(0,1,1)T,α3=(0,0,1)T;β1=(1,0,1)T,β2=(0,1,—1)T,β3=(1,2,0)T,求α1,α2,α3到β1,β2,β3的过渡矩阵C,并求γ=(—1,2,1)T在基β1,
最新回复
(
0
)