首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)=|x—y|≯(z,y),其中φ(x,y)在点(0,0)的某邻域内连续.则φ(0,0)=0是f(x,y)在点(0,0)处可微的 ( )
设f(x,y)=|x—y|≯(z,y),其中φ(x,y)在点(0,0)的某邻域内连续.则φ(0,0)=0是f(x,y)在点(0,0)处可微的 ( )
admin
2014-04-23
80
问题
设f(x,y)=|x—y|≯(z,y),其中φ(x,y)在点(0,0)的某邻域内连续.则φ(0,0)=0是f(x,y)在点(0,0)处可微的 ( )
选项
A、必要条件但非充分条件.
B、充分条件但非必要条件.
C、充分必要条件.
D、既非充分又非必要条件.
答案
C
解析
先证充分性.设φ(0,0)=0,由于φ(x,y)在点(0,0)处连续,所以
由于
所以
所以
按可微定义,f(x,y)在点O(0,0)处可微,且df=0.△x+0.△y,即f
x
’
(0,0)=0.f
y
’
(0,0)=0.再证必要性.设f(x,y)在点(0,0)处可微,则f
x
’
(0,0)与.f
y
’
(0,0)必都存在.
其中x→0
+
时取“+”,x→0
-
时取“一”.由于f
x
’
(0,0)存在,所以+φ(0,0)=一φ(0,0),从而φ(0.0)=0.证毕.
转载请注明原文地址:https://kaotiyun.com/show/qN54777K
0
考研数学一
相关试题推荐
已知y1=3,y2=3+x2,y3=3+x2+ex都是微分方程(x2-2x)y“-(x2-2)y‘+(2x-2)y=6x-6的解,求此方程的通解.
在上半平面求一条向上凹的曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
试证向量a=-i+3j+2k,b=2i-3j-4k,c=-3i+12j+6k在同一平面上.
利用初等行变换求下列矩阵的列向量组的一个最大无关组,并把其余列向量用最大无关组线性表示:
举例说明下列各命题是错误的:若向量组a1,a2,…,am,是线性相关的,则a1可由a2,a3,…,am线性表示.
曲线的极坐标方程为r=a(1+cosθ),求该曲线上对应于θ=π/6处的切线的直角坐标方程.
设二次型f(x1,x2,x3)=2ax1x2+2bx1x3+2cx2x3,该二次型的矩阵为A,且Aα0=α0.(Ⅰ)求a,b,c;(Ⅱ)求正交矩阵Q,使得二次型在变换X=QY下化为标准形.
设函数y=y(x)由参数方程所确定,求:
判别∫1+∞dx的敛散性。
随机试题
A.分泌性腹泻B.渗出性腹泻C.吸收不良性腹泻D.动力性腹泻E.渗透性腹泻下述疾病分别属于何种腹泻细菌学痢疾()
急性胰腺炎时,关于淀粉酶下列说法正确的是
小建中汤中配伍芍药的意义是()
一英国公民在中国境内居留期间,未持有效旅行证件前往不对外国人开放的地区旅行,被当地县公安机关处以7天的拘留处罚。该英国公民对此不服,前往当地一家律师事务所进行咨询。以下咨询意见正确的是哪些?
按照现行法律法规的有关规定,在以下土地权利中,可以抵押的有()。
债券的发行价格()
英国曾经流传这样一个关于战争的小故事:“少了一颗铁钉,丢了一只马掌;少了一只马掌,摔了一匹战马;摔了一匹战马,死了一位将军;死了一位将军,败了一场战役;败了一场战役,丢了一个国家。所以,少了一颗铁钉导致了一个国家的灭亡。”以下哪项论述与这个故事使用了相同
要了解英国君主立宪制确立之初的情况,下列文献中可供参考的是()。
我们都有过不由自主的时刻,就好像有一种我们所无法控制的力量,违背我们的意志,支配我们做下平时不会做的事,说出平时不会说的话。人越年轻,不由自主的时候就有可能越多,而会使我们陷入不由自主境地的导火索,往往都是由过往事件引发的情绪。它们的逻辑关系是:过往某个重
WaterandCitiesVocabularyandExpressionssanitationmalariajeopardizetenurediarrheacholeraWhatisthe
最新回复
(
0
)