首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设方程组 有非零解,试确定参数a的值,并求该非零解.
设方程组 有非零解,试确定参数a的值,并求该非零解.
admin
2018-12-21
60
问题
设方程组
有非零解,试确定参数a的值,并求该非零解.
选项
答案
方程组(***)有非零解,即方程组(*)与方程组(**)有非零公共解,设为β,则β属于方程组(*)的通解,也属于方程组(**)的通解,即 β=k
1
ξ
1
﹢k
2
ξ
2
=λ
1
η
1
﹢λ
2
η
2
, 其中k
1
,k
2
不全为零,且λ
1
,λ
2
不全为零.得 k
1
ξ
1
﹢k
2
ξ
2
-λ
1
η
1
-λ
2
η
2
=0, (*
’
) (*
’
)式有非零解[*]r(ξ
1
,ξ
2
,-η
2
,-η
2
)﹤4. 对(ξ
1
,ξ
2
,-η
1
,-η
2
)作初等行变换,有 [*] r(ξ
1
,ξ
2
,-η
1
,-η
2
)<4[*]a=-8. 故当a=-8时,方程组(***)有非零解. 当a=-8时,方程组(*
’
)的系数矩阵经初等行变换化为 (ξ
1
,ξ
2
,-η
1
,-η
2
) →[*] 方程组(*
’
)的非零解为 (k
1
,k
2
,λ
1
,λ
2
)
T
=k(1,1,1,1)
T
, 其中k是任意非零常数.故方程组(*),(**)的非零公共解为 β=k
1
ξ
1
﹢k
2
ξ
2
=[*]或β=λ
1
η
1
﹢λ
2
η
1
=[*] 其中k是任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/v8j4777K
0
考研数学二
相关试题推荐
(2002年)已知函数f(χ)在(0,+∞)上可导,f(χ)>0,f(χ)=1,且满足求f(χ).
(2008年)设函数y=y(χ)由参数方程确定,其中χ(t)是初值问题的解,求.
(1999年)已知函数y=,求(1)函数的增减区间及极值;(2)函数图形的凹凸区间及拐点;(3)函数图形的渐近线.
(2012年)已知函数f(χ)=,记a=f(χ).(Ⅰ)求a的值;(Ⅱ)若当χ→0时,f(χ)-a与χk是同阶无穷小,求常数k的值.
交换累次积分I的积分次序:I=.
由曲线y=lnx及直线x+y=e+1,y=0所围成的平面图形的面积可用二重积分表示为____________,其值等于____________.
已知四元二个方程的齐次线性方程组的通解为X=k1[1,0,2,3]T+k2[0,1,一l,1]T,求原方程组.
设A是s×n矩阵,B是A的前m行构成的m×b矩阵,已知A的行向量组的秩为r,证明:r(a)≥r+m一s.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,α2,…,αs,β中任意5个向量线性无关.
已知向量组α1,α2,α3,α4线性无关,则向量组2α1+α3+α4,α2一α4,α3+α4,α2+α3,2α1+α2+α3的秩是()
随机试题
A、Hemissedhisplane.B、Thetaxidriveroverslept.C、Heheardaterribleaccidentreportedovertheradio.D、Hewouldhavebeen
A.附子B.干姜C.两者均用D.两者均不用治疗阳虚水肿,常选用()
患者,女,50岁。因患尿毒症而入院,患者精神萎靡,食欲差,24小时尿量80ml,下腹部空虚,无腹痛。患者目前的排尿状况是
A.抑制细菌细胞壁合成B.抑制细菌蛋白质合成C.抑制细菌DNA依赖的RNA多聚酶D.抑制细菌二氢叶酸还原酶E.抑制细菌DNA合成β-内酰胺类()
原发性痛经的病因不属于继发性痛经分类的选项是
不按期申报、领取房屋租赁证的,由()责令限期补办手续,并可处以罚款。
银行工作人员制作虚假的委托收款凭证交付他人属于()。
发挥人的主观能动性的基本途径是()
A、Thebossisoftenlateforwork.B、Thebosswillprobablydisciplinethewoman.C、Thebossmaydisregardthewoman’slateness.
HowtoUseaLibraryA)You’redrivingyourcarhomefromworkorschool.Andsomethinggoeswrong.Theenginestallsoutatligh
最新回复
(
0
)