首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f’’’(ξ)=3.
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f’’’(ξ)=3.
admin
2019-08-01
40
问题
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f’’’(ξ)=3.
选项
答案
[详解] 在x=0处,将f(x)按泰勒公式展开,得[*] 其中η介于0与x之间,x∈[-1,1]. 分别令x=-1和x=1,并根据已知条件,得[*] 两式相减,可得 f’’’(η
1
)+f’’’(η
2
)=6. 由f’’’(x)的连续性,f’’’(x)在闭区间[η
1
,η)
2
]上有最大值和最小值,设它们分别为M和m,则有 [*] 再由连续函数的介值定理知,至少存在一点ξ∈[η
1
,η
2
][*](-1,1),使 [*]
解析
[分析] 一般来说,题设条件具有二阶或二阶以上的导数时,往往需要应用泰勒公式.本题题设具有三阶连续导数,从要证的结论可以看出,应展开到三阶导数项.
[评注1] 一般地,用泰勒公式展开有
F(x)=f(x
0
)+f’(x
0
)(x+x
0
)+
其中在x
0
与x之间.应特别注意的是,ξ随x的变化而变化.本题中,当x分别取-1和1时,对应η应分别取η
1
和η
2
,并不是固定不变的,否则就会出现错误.
[评注2] 在泰勒展开式中,x
0
的选取也是值得注意的.一般来说,取x
0
为一阶导数值是已知的点(如:本例中f’(0)=0)或隐含已知的点,比如极值点、最值点等.
转载请注明原文地址:https://kaotiyun.com/show/vDN4777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]连续,且f(0)=f(1),证明:在[0,1]上至少存在一点ξ,使得
证明∫0ex2cosnxdx=0.
设有定义在(-∞,+∞)上的函数:以x=0为第二类间断点的函数是________.
证明:
函数f(x)=的连续区间是_________.
运用导数的知识作函数y=x+的图形.
随机试题
阅读培根《论学问》中的一段文字。有些书可供一尝,有些书可以吞下,有不多的几部书则应当咀嚼消化;这就是说,有些书只要读读他们底一部分就够了,有些书可以全读,但是不必过于细心地读;还有不多的几部书则应当全读,勤读,而且用心地读。有些书也可以请代表去读,
A.心尖部膨隆,可见钙化影B.冠状动脉内钙化影C.肺门血管影增强D.肺门部钙化影E.降主动脉部位可见钙化影陈旧性广泛前壁心肌梗死合并心尖部室壁瘤
A.既能散寒止痛,又能回阳B.既能散寒止痛,又能助阳C.既能散寒止痛,又能潜阳D.既能散寒止痛,又能通阳E.既能散寒止痛,又能升阳肉桂,丁香都具有的功效是
中医学整体观念的内涵是
一侧或局限性分布的湿啰音多见于
绒癌最常见的转移部位依次是
依据《中华人民共和国防洪法》,下列说法正确的有()。
先张法预应力施工中,预应力筋放张时,混凝土强度应符合设计要求,当设计无要求时,混凝土强度不应低于标准值的()%。
2000年某兵团棉花产量是()。2001~2006年兵团棉花产量的平均增长速度是()。
辛亥革命的失败,从主观上说是因为()
最新回复
(
0
)