首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f’’’(ξ)=3.
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f’’’(ξ)=3.
admin
2019-08-01
55
问题
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f’’’(ξ)=3.
选项
答案
[详解] 在x=0处,将f(x)按泰勒公式展开,得[*] 其中η介于0与x之间,x∈[-1,1]. 分别令x=-1和x=1,并根据已知条件,得[*] 两式相减,可得 f’’’(η
1
)+f’’’(η
2
)=6. 由f’’’(x)的连续性,f’’’(x)在闭区间[η
1
,η)
2
]上有最大值和最小值,设它们分别为M和m,则有 [*] 再由连续函数的介值定理知,至少存在一点ξ∈[η
1
,η
2
][*](-1,1),使 [*]
解析
[分析] 一般来说,题设条件具有二阶或二阶以上的导数时,往往需要应用泰勒公式.本题题设具有三阶连续导数,从要证的结论可以看出,应展开到三阶导数项.
[评注1] 一般地,用泰勒公式展开有
F(x)=f(x
0
)+f’(x
0
)(x+x
0
)+
其中在x
0
与x之间.应特别注意的是,ξ随x的变化而变化.本题中,当x分别取-1和1时,对应η应分别取η
1
和η
2
,并不是固定不变的,否则就会出现错误.
[评注2] 在泰勒展开式中,x
0
的选取也是值得注意的.一般来说,取x
0
为一阶导数值是已知的点(如:本例中f’(0)=0)或隐含已知的点,比如极值点、最值点等.
转载请注明原文地址:https://kaotiyun.com/show/vDN4777K
0
考研数学二
相关试题推荐
设f(x)在(-∞,+∞)连续,存在极限证明:(Ⅰ)设A<B,则对∈(A,B),∈(-∞,+∞),使得f(ξ)=μ;(Ⅱ)f(x)在(-∞,+∞)有界.
证明∫0ex2cosnxdx=0.
设有定义在(-∞,+∞)上的函数:以x=0为第二类间断点的函数是________.
证明:
函数f(x)=的连续区间是_________.
设f(x)在(a,b)四次可导,x0∈(a,b)使得f’’(x0)=f’’’(x0)=0,又设f(4)(x)>0(x∈(a,b)),求证f(x)在(a,b)为凹函数.
运用导数的知识作函数y=x+的图形.
随机试题
在先天性脊柱侧弯病因中,下列哪项常见
在下列关于碳水化合物的表述中,不正确的是
牛,4岁,生病2d,体温39℃,精神倦怠,吃草料明显减少,口渴喜饮,大便干燥,小便短赤,咳嗽,咳声洪亮,气促喘粗,呼出气热,鼻流脓涕,口色赤红,舌苔黄藻,脉象洪数。该证属于
地下管线埋设深度的要求。以下图示哪个错误?[2005年第70题]
在中国历史的过程中,城市的建设服务于王朝的对内统治与对外的拓展疆域,由此决定了当时城市选址的时期为()
用镗刀在工件上镗孔的机床称为()。
用于库存和生产控制的最普遍、最主要的报告是()。
《中华人民共和国消费者权益保护法》规定,消费者在购买、使用商品和接受服务时享有的权利有()。
红山文化
Motherdecidedtogotothesupermarketassoonasshe______.
最新回复
(
0
)