首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内可导,且又f(x0)>0(<0),f(x)<0(>0)(如图2.12),求证:f(x)在(a,b)恰有两个零点.
设f(x)在(a,b)内可导,且又f(x0)>0(<0),f(x)<0(>0)(如图2.12),求证:f(x)在(a,b)恰有两个零点.
admin
2017-10-23
48
问题
设f(x)在(a,b)内可导,且
又f(x
0
)>0(<0),
f(x)<0(>0)(如图2.12),求证:f(x)在(a,b)恰有两个零点.
选项
答案
由[*]x
1
∈(a,x
0
)使f(x
1
)<0,]x
2
∈(x
0
,b)使f(x
2
)<0,又f(x
0
)>0,则f(x)在(x
1
,x
0
)与(x
0
,x
2
)内各至少存在一个零点. 因f’(x)>0([*]x∈(a,x
0
)),从而f(x)在(a,x
0
)单调增加;f’(x)<0([*]x∈(x
0
,b)),从而f(x)在(x
0
,b)单调减少.因此,f(x)在(a,x
0
),(x
0
,b)内分别存在唯一零点,即在(a,b)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/vEX4777K
0
考研数学三
相关试题推荐
设随机变量X~U(0,1),在X=x(0<x<1)下,Y~U(0,x).(1)求X,Y的联合密度函数;(2)求Y的边缘密度函数.
设一设备在时间长度为t的时间内发生故障的次数N(t)~P(λt).(1)求相继两次故障之间时间间隔T的概率分布;(2)求设备在无故障工作8小时下,再无故障工作8小时的概率.
设随机变量X,Y相互独立,它们的分布函数为FX(x),FY(y),则Z=min(X,Y)的分布函数为().
n把钥匙中只有一把可以把门打开,现从中任取一把开门,直到打开门为止,针对下列两种情况分别求开门次数的数学期望和方差:(1)试开过的钥匙除去;(2)试开过的钥匙重新放回.
设每次试验成功的概率为0.2,失败的概率为0.8,设独立重复试验直到成功为止的试验次数为X,则E(X)=________.
设总体X~F(x,θ)=,样本值为1,1,3,2,1,2,3,3,求θ的矩估计和最大似然估计.
设总体X服从正态分布N(μ,σ2)(σ>0),X1,X2,…,Xn为来自总体X的简单随机样本,令Y=,求Y的数学期望与方差.
(1)设系统由100个相互独立的部件组成。运行期间每个部件损坏的概率为0.1.至少有85个部件是完好时系统才能正常工作,求系统正常工作的概率。(2)如果上述系统由n个部件组成,至少有80%的部件完好时系统才能正常工作。问n至少多大才能使系统正常工作的概
将n个同样的盒子和n只同样的小球分别编号为1,2,…,n。把这n只小球随机地投入n个盒子中,每个盒子中投入一只小球。问至少有一只小球的编号与盒子的编号相同的概率是多少?
设二维随机变量(X,Y)的概率密度为求:(X,Y)的边缘概率密度fx(x),fy(y);
随机试题
病历书写不正确的是()
MIU试验是
垂体性甲状腺功能亢进与甲状腺性甲状腺功能亢进的鉴别是前者
墙按其构造方式不同的分类不包括()。
企业向海关注册登记成为报关企业前,必须先行向所在地海关提出申请,由所在地海关初审后上报海关总署审批,经海关总署批准成立后方可向所在地海关注册。
徐州汉画像石的艺术特征是绘画与雕塑结合,在手法上主要运用()。
根据下面材料回答下列问题。2015年该省各类教育中,毕业生数与在校生数的比值最接近的是()。
洋务学堂的主要类型不包括()
我国宪法规定,()是中华人民共和国每一个公民的神圣职责。
(2018年第17题)2017年6月,我国科学家利用“墨子号”量子科学实验卫星在国际上率先成功实现了千公里级的星地双向量子纠缠分发。“量子纠缠”就是两个(或多个)粒子共同组成的量子状态,无论粒子之间相隔多远,测量其中一个粒子必然会影响其他粒子。“量子纠缠”
最新回复
(
0
)