首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关。证明:如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3。
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关。证明:如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3。
admin
2018-02-07
76
问题
已知λ
1
,λ
2
,λ
3
是A的特征值,α
1
,α
2
,α
3
是相应的特征向量且线性无关。证明:如α
1
+α
2
+α
3
仍是A的特征向量,则λ
1
=λ
2
=λ
3
。
选项
答案
若α
1
+α
2
+α
3
是矩阵A属于特征值λ的特征向量,则 A(α
1
+α
2
+α
3
)=λ(α
1
+α
2
+α
3
)。 又A(α
1
+α
2
+α
3
)=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
,于是有 (λ—λ
1
)α
1
+(λ一λ
2
)α
2
+(λ一λ
3
)α
3
=0。 因为α
1
,α
2
,α
3
线性无关,故λ-λ
1
=0,λ一λ
2
=0,λ—λ
3
=0,即λ
1
=λ
2
=λ
3
。
解析
转载请注明原文地址:https://kaotiyun.com/show/vHk4777K
0
考研数学二
相关试题推荐
求解下列微分方程:
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(1)存在η∈(1/2,1),使f(η)=η;(2)对任意实数λ,必存在ε∈(0,η),使得fˊ(ε)-λ[f(ε)-ε]=1
求f(x)的值域。
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ζ,使f"’(ζ)=3.
设u=e-xsinx/y,则э2u/эxэy在点(2,1/π)处的值________。
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
随机试题
AnoldIndianstorysaysthatthegameofchess(国际象棋)wasinventedbySissaBen,PrimeMinisterofKingShirham.Assoonasthe
Ⅱ型呼吸衰竭应给予吸氧的浓J蔓是
63岁妇女出现血性白带,除生殖系统恶性肿瘤外,考虑有哪些疾病可能
怀疑再生障碍性贫血的老年患者行穿刺的最佳部位是
A.大黄B.火麻仁C.京大戟D.巴豆E.芫花治疗寒积便秘,宜用()
某公司从一家跨国公司购进一套生产速溶咖啡的技术资料,因技术力量薄弱,无法生产出合格产品,遂与某科技大学签订技术合同,约定由该公司提供技术开发所需科研经费,付酬10万元,并派5名技校毕业生协助参与开发工作,主要是整理资料,购买器材等,但对开发出的成果如何申请
素质教育是指一种以提高受教育者诸方面素质为目标的教育模式,它重视人的()。
根据以下资料。回答下列题。2011年,我国能源生产总量达到31.8亿吨标准煤,是世界第一大能源生产国。其中,原煤产量35.2亿吨,原油产量稳定在2亿吨,成品油产量2.7亿吨。天然气产量快速增长,达到1031亿立方米。电力装机容量10.6亿千瓦。年
______foreverarethedays______Iwasyoung.
Splittingdinnercheckscancauseasplittingheadache,evenwhenthedinersaremathematicsmajors.Threecomputerscience【B1】_
最新回复
(
0
)