首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关。证明:如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3。
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关。证明:如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3。
admin
2018-02-07
44
问题
已知λ
1
,λ
2
,λ
3
是A的特征值,α
1
,α
2
,α
3
是相应的特征向量且线性无关。证明:如α
1
+α
2
+α
3
仍是A的特征向量,则λ
1
=λ
2
=λ
3
。
选项
答案
若α
1
+α
2
+α
3
是矩阵A属于特征值λ的特征向量,则 A(α
1
+α
2
+α
3
)=λ(α
1
+α
2
+α
3
)。 又A(α
1
+α
2
+α
3
)=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
,于是有 (λ—λ
1
)α
1
+(λ一λ
2
)α
2
+(λ一λ
3
)α
3
=0。 因为α
1
,α
2
,α
3
线性无关,故λ-λ
1
=0,λ一λ
2
=0,λ—λ
3
=0,即λ
1
=λ
2
=λ
3
。
解析
转载请注明原文地址:https://kaotiyun.com/show/vHk4777K
0
考研数学二
相关试题推荐
[*]
证明:函数在(0,0)点连续,fx(0,0),fy(0,0)存在,但在(0,0)点不可微.
求在抛物线y=x2上横坐标为3的点的切线方程.
若f(x)是连续函数,证明
已知f(x)是微分方程=_______.
设A为n阶可逆矩阵,则下列结论正确的是().
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2,(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.求A的全部特征值;
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求实数n的值;
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.将β1,β2,β3用α1,α2,α3线性表示.
随机试题
嵌入式操作系统的特点包括()
属于Ⅱ型超敏反应的疾病是
下列药物中属于抗抑郁药物的是()。
值得注意的是,如果无形收益已通过有形收益得到体现,如在当地能显示其形象、地位的写字楼,那承租者用该写字楼办公可显示其实力,该因素往往已包含在该写字楼的()中,则不必单独考虑,以免重复。
财政机关对甲公司20×2年度财务工作进行检查,但甲公司领导以“财务部门负责人出差”为由予以拒绝,后经多方协调,财政机关对该公司进行了检查,检查时,发现如下问题:(1)2月15日,公司从外地购买了一批货物,收到发票后,经办人员王某发现发票金额与实际
物业经营管理的目标,要从()角度出发,在物业经济寿命的全寿命周期里,保持和提高物业的市场价值以及未来的发展潜力。
如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.求该椭圆的离心率和标准方程;
湘剧属于()腔系。
______目前对于地球磁场的变化和倒转提出了不少理论和模型,______基本上都处在假设和推测的阶段,并没有一个十分成熟的理论。
函数f(x)=(x-x3)sinπx的可去间断点的个数为
最新回复
(
0
)