首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关。证明:如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3。
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关。证明:如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3。
admin
2018-02-07
71
问题
已知λ
1
,λ
2
,λ
3
是A的特征值,α
1
,α
2
,α
3
是相应的特征向量且线性无关。证明:如α
1
+α
2
+α
3
仍是A的特征向量,则λ
1
=λ
2
=λ
3
。
选项
答案
若α
1
+α
2
+α
3
是矩阵A属于特征值λ的特征向量,则 A(α
1
+α
2
+α
3
)=λ(α
1
+α
2
+α
3
)。 又A(α
1
+α
2
+α
3
)=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
,于是有 (λ—λ
1
)α
1
+(λ一λ
2
)α
2
+(λ一λ
3
)α
3
=0。 因为α
1
,α
2
,α
3
线性无关,故λ-λ
1
=0,λ一λ
2
=0,λ—λ
3
=0,即λ
1
=λ
2
=λ
3
。
解析
转载请注明原文地址:https://kaotiyun.com/show/vHk4777K
0
考研数学二
相关试题推荐
设F(x,y)是一个二维随机向量(X,Y)的分布函数,x1
设则在x=0处,下列结论不一定正确的是[].
下列函数可以看成是由哪些简单函数复合而成?(其中a为常数,e≈2.71828)
在区问(-∞,+∞)内,方程|x|1/4+|x|1/2-cosx=0
设A是n(n>1)阶矩阵,满足Ak=2E(k>2,k∈Z+),则(A+)k=().
若f(1)=0,f’(1)=1,求函数f(u)的表达式.
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.求A的全部特征值;
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
设矩阵A与B相似,且求a,b的值;
设4维向量组α1=(1+α,1,1,1)T,α2=(2,2+α,2,2)T,α3=(3,3,3+α,3)T,α4=(4,4,4,4+α)T,问口为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
随机试题
图中路口中央黄色路面标记是什么标线?
ThefavoritefoodintheUnitedStatesishamburger.Thefavoriteplacetobuyahamburgerisafastfoodrestaurant.Atfastfo
胃与十二指肠相接处称
用于检测T细胞功能的细胞毒试验是
水痘患者治疗时禁用
某大型基坑工程由于受周围建筑物制约不能按要求放坡,若采用机械开挖,土壁支护宜采用( )。
专用消防口是消防人员为灭火而进入建筑物的专用入口,宽度不小于()mm。
常用数据备份方式包括完全备份、增量备份和差异备份,三种方式在数据恢复速度方面由快到慢的顺序为()。
Helivesonlya______throwfromhere.
Inanordinarymirroryourrighteyestaresatyourrighteyeandyourlefteyeatyourlefteye--theoppositeoftheright-left
最新回复
(
0
)