首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T, α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T. p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T, α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T. p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
admin
2012-05-18
126
问题
设向量组α
1
=(1,1,1,3)
T
,α
2
=(-1,-3,5,1)
T
, α
3
=(3,2,-1,P+2)
T
,α
4
=(-2,-6,10,p)
T
.
p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
选项
答案
当P=2时,向量组α
1
,α
2
,α
3
,α
4
线性相关.此时,向量组的秩等于3.α
1
,α
2
,α
3
(或lα
1
,α
3
,α
4
)为其一个极大线性无关组.
解析
对矩阵A作初等行变换得到矩阵B,则A的列向量与B的列向量有相同的线性相关性,因此观察B的列向量就可判断A的列向量是否线性相关,亦可求出极大线性无关组.
转载请注明原文地址:https://kaotiyun.com/show/aaC4777K
0
考研数学二
相关试题推荐
幂级数的收敛区间为__________.
已知空问三个平面aix+biy+cix+di=0(i=1,2,3)的三条交线互相平行,则线性方程组的系数矩阵A和增广矩阵A的秩分别为rA=_____,_____.
函数f(x)=|x3+x2-2x|arctanx的不可导点的个数是().
求由曲线y=3一x2与圆x2+(y一1)2=4所围图形中含坐标原点那一部分的面积.
若T是线性空间V中的线性变换,并且Tm-1α≠0,Tmα=0.证明:α,Tα,…,Tm-1α线性无关.
求向量空间V={(x1,x2,…,xn)|x1+x2+…+xn=0,xi∈R)的一组基及其维数.
若二次型f(x1,x2,x3)=2x12+x22+x32+2x1x2+tx2x3是正定的,则t的取值范围是_______.
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值
某种商品t时期的供给量St和需求量Dt与Pt的关系分别为St=3+2Pt,Dt=4-3Pt-1.又假定在每个时期中St=Dt,且当t=0时,Pt=P0,求价格随时间变化的规律.
(2014年)设D是由曲线xy+1=0与直线y+x=0及y=2围成的有界区域,则D的面积为_____。
随机试题
理论上说,你的计划听上去不错,但实际上行得通吗?
大众传播是一种
综合结转分步法与分项结转分步法的区别
建设工程监理应当依照法律、行政法规及有关的技术标准、设计文件和建筑工程承包合同,对承包单位在()等方面,代表建设单位实施监督。
物业服务企业在国内参与投标业务,必须取得()。
求助者一般资料:韩某,女性,28岁,公司出纳。案例介绍:一年以前求助者的母亲因为心脏病去世,因此求助者一直害怕自己患有心脏病,整日感到紧张、害怕,经常会心悸、气短等。而且出现烦躁、情绪激动和兴趣降低,但还可以上班和正常生活。最近两个多月,症状加重
如果让你策划一个关于艾滋病的宣传活动。你如何准备?
[*]
目前我国微机上汉字内部码采用的是( )。
WhatIsAnAmerican?"Ican’tmakeyouout,"HerryJameshasMrs.TristramsaytotheAmerican,"whetheryouareverysimpl
最新回复
(
0
)