首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 设f(x,y)与φ(z,y)均为可微函数,且φy’(x,y)≠0,已知(x0,y0)是f(x,y)在约束条件φ(x,Y)=0下的一个极值点,下列选项正确的是( ).
[2006年] 设f(x,y)与φ(z,y)均为可微函数,且φy’(x,y)≠0,已知(x0,y0)是f(x,y)在约束条件φ(x,Y)=0下的一个极值点,下列选项正确的是( ).
admin
2021-01-25
36
问题
[2006年] 设f(x,y)与φ(z,y)均为可微函数,且φ
y
’(x,y)≠0,已知(x
0
,y
0
)是f(x,y)在约束条件φ(x,Y)=0下的一个极值点,下列选项正确的是( ).
选项
A、若f
x
’(x
0
,y
0
)=0,则f
y
’(x
0
,y
0
)=0
B、若f
x
’(x
0
,y
0
)=0, 则f’
y
(x
0
,y
0
)≠0
C、若f
x
’(x
0
,y
0
)≠0,则f
y
’(x
0
,y
0
)=0
D、若f
x
’(x
0
,y
0
)≠0,则f’
y
(x
0
,y
0
)≠0
答案
D
解析
解一 由拉格朗日乘数法知,若(x
0
,y
0
)是f(x,y)在条件φ(x,y)=0下的极值点,则必有
f
x
’(x
0
,y
0
)+λφ
x
’(x
0
,y
0
)=0, ①
f
x
’(x
0
,y
0
)+λφ
x
’(x
0
,y
0
)=0. ②
若f
x
’(x
0
,y
0
)≠0,由式①知λ≠0.又由题设有φ
y
’(x
0
,y
0
)≠0,再由式②知f
y
’(x
0
,y
0
)≠0.仅(D)入选.
解二 构造拉格朗日函数F(x,y,λ)=f(x,y)+λφ(x,y),并记对应于极值点(x
0
,y
0
)处的参数的值为λ
0
,则
由式③与式④消去λ
0
得到
f
x
’(x
0
,y
0
)/φ
x
’(
0
,y
0
)=一λ
0
=f’
y
(x
0
,y
0
)/φ’
y
(x
0
,y
0
).
即 f’
x
(x
0
,y
0
)φ’
y
(x
0
,y
0
)一f
y
’(x
0
,y
0
)φ
x
’(x
0
,y
0
)=0.
整理得
若f
x
’(x
0
,y
0
)≠0,则由式③知,φ
x
’(x
0
,y
0
)≠0.因而f
y
’(x
0
,y
0
)≠0.仅(D)入选.
解三 由题设φ
y
’(x,y)≠0知,φ(x,y)=0确定隐函数y=y(x).将其代入f(x,y)中得到f(x,y(x)).此为一元复合函数.
在φ(x,y)=0两边对x求导,得到
因f(x,y(x))在x=x
0
处取得极值,由其必要条件得到f’
x
+f
y
’y’=f
x
’+f
y
’(一φ
x
’/φ
y
’)=0.因而当f
x
’(x
0
,y
0
)≠0时,必有f
y
’(x
0
,y
0
)≠0.仅(D)入选.
转载请注明原文地址:https://kaotiyun.com/show/vMx4777K
0
考研数学三
相关试题推荐
曲线的斜渐近线为____________.
设A是三阶矩阵,且|A|=4,则=________.
级数的和为_________.
设向量组α1,α2,α3线性无关,β1不可α1,α2,α3线性表示,而β2可由α1,α2,α3线性表示,则下列结论正确的是().
计算二重积分,其中D={(x,y)|x2≤y≤1}.
设随机事件A与B互不相容,且0<P(A)<1,0<P(B)<1,令().X与Y的相关系数为ρ,则().
当x→0时,ex—(ax2+bx+1)是比x2高阶的无穷小,则()
设总体X服从N(μ,σ2),与S2分别为样本均值和样本方差,n为样本容量,则下面结论不成立的是()
考虑二元函数的下面4条性质(Ⅰ)f(x,y)在点(x0,y0)处连续;(Ⅱ)f(x,y)在点(x0,y0)处的两个偏导数连续;(Ⅲ)f(x,y)在点(x0,y0)处可微;(Ⅳ)f(x,y)在点(x0,y0)处的两个偏导数存在;若用PQ表示可由性质
随机试题
根据公司法律制度的规定,下列关于有限责任公司股东增资优先认缴权的表述中,正确的有()。
A、Themanusedtobeunhealthy.B、Themanishandsome.C、Themanatealoteveryday.D、Themanhasbecomeabetterperson.B
关于高压熔断器串真空接触器的选择原则说法,正确的是:
某施工企业通过投标获得了某机电安装工程的施工总承包任务,该施工企业中标后的第10天与业主签订了固定总价机电安装施工总承包合同。随后,该施工企业将部分主体工程分包给具有相应资质条件的分包人,并签订了分包合同。施工总承包合同中约定的合同工期为380天,而依施工
股票分割的主要作用包括()。
初一学生李某未能完整背诵课文,老师罚他抄课文50遍。老师的做法()。
对于朋友之间的隔阂如何处理?
下列各句中,没有语病的一句是:
下列选项中,属于邻接权客体的是()。(2012年单选34)
在社会主义经济体制改革问题上,毛泽东的许多创造性的提法有()。
最新回复
(
0
)